Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy
Portlandite [Ca(OH)<sub>2</sub>] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide at...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22a0625f5d98469289d5c05d84a5e5e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:22a0625f5d98469289d5c05d84a5e5e9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:22a0625f5d98469289d5c05d84a5e5e92021-11-25T18:26:32ZUranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy10.3390/min111112412075-163Xhttps://doaj.org/article/22a0625f5d98469289d5c05d84a5e5e92021-11-01T00:00:00Zhttps://www.mdpi.com/2075-163X/11/11/1241https://doaj.org/toc/2075-163XPortlandite [Ca(OH)<sub>2</sub>] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)<sub>2</sub>] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO<sub>2</sub>(OH)<sub>n</sub>]<sup>2–n</sup> (<i>n</i> = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility.Christopher A. LeeArjen van VeelenKatherine MorrisJ. Fred W. MosselmansRoy A. WogeliusNeil A. BurtonMDPI AGarticleportlanditeuranyladsorptionhyperalkalineextended X-ray absorption fine structure (EXAFS)potential of mean force (PMF)MineralogyQE351-399.2ENMinerals, Vol 11, Iss 1241, p 1241 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
portlandite uranyl adsorption hyperalkaline extended X-ray absorption fine structure (EXAFS) potential of mean force (PMF) Mineralogy QE351-399.2 |
spellingShingle |
portlandite uranyl adsorption hyperalkaline extended X-ray absorption fine structure (EXAFS) potential of mean force (PMF) Mineralogy QE351-399.2 Christopher A. Lee Arjen van Veelen Katherine Morris J. Fred W. Mosselmans Roy A. Wogelius Neil A. Burton Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy |
description |
Portlandite [Ca(OH)<sub>2</sub>] is a potentially dominant solid phase in the high pH fluids expected within the cementitious engineered barriers of Geological Disposal Facilities (GDF). This study combined X-ray Absorption Spectroscopy with computational modelling in order to provide atomic-scale data which improves our understanding of how a critically important radionuclide (U) will be adsorbed onto this phase under conditions relevant to a GDF environment. Such data are fundamental for predicting radionuclide mass transfer. Surface coordination chemistry and speciation of uranium with portlandite [Ca(OH)<sub>2</sub>] under alkaline groundwater conditions (ca. pH 12) were determined by both in situ and ex situ grazing incidence extended X-ray absorption fine structure analysis (EXAFS) and by computational modelling at the atomic level. Free energies of sorption of aqueous uranyl hydroxides, [UO<sub>2</sub>(OH)<sub>n</sub>]<sup>2–n</sup> (<i>n</i> = 0–5) with the (001), (100) and (203) or (101) surfaces of portlandite are predicted from the potential of mean force using classical molecular umbrella sampling simulation methods and the structural interactions are further explored using fully periodic density functional theory computations. Although uranyl is predicted to only weakly adsorb to the (001) and (100) clean surfaces, there should be significantly stronger interactions with the (203/101) surface or at hydroxyl vacancies, both prevalent under groundwater conditions. The uranyl surface complex is typically found to include four equatorially coordinated hydroxyl ligands, forming an inner-sphere sorbate by direct interaction of a uranyl oxygen with surface calcium ions in both the (001) and (203/101) cases. In contrast, on the (100) surface, uranyl is sorbed with its axis more parallel to the surface plane. The EXAFS data are largely consistent with a surface structural layer or film similar to calcium uranate, but also show distinct uranyl characteristics, with the uranyl ion exhibiting the classic dioxygenyl oxygens at 1.8 Å and between four and five equatorial oxygen atoms at distances between 2.28 and 2.35 Å from the central U absorber. These experimental data are wholly consistent with the adsorbate configuration predicted by the computational models. These findings suggest that, under the strongly alkaline conditions of a cementitious backfill engineered barrier, there would be significant uptake of uranyl by portlandite to inhibit the mobility of U(VI) from the near field of a geological disposal facility. |
format |
article |
author |
Christopher A. Lee Arjen van Veelen Katherine Morris J. Fred W. Mosselmans Roy A. Wogelius Neil A. Burton |
author_facet |
Christopher A. Lee Arjen van Veelen Katherine Morris J. Fred W. Mosselmans Roy A. Wogelius Neil A. Burton |
author_sort |
Christopher A. Lee |
title |
Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy |
title_short |
Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy |
title_full |
Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy |
title_fullStr |
Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy |
title_full_unstemmed |
Uranium (VI) Adsorbate Structures on Portlandite [Ca(OH)<sub>2</sub>] Type Surfaces Determined by Computational Modelling and X-ray Absorption Spectroscopy |
title_sort |
uranium (vi) adsorbate structures on portlandite [ca(oh)<sub>2</sub>] type surfaces determined by computational modelling and x-ray absorption spectroscopy |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/22a0625f5d98469289d5c05d84a5e5e9 |
work_keys_str_mv |
AT christopheralee uraniumviadsorbatestructuresonportlanditecaohsub2subtypesurfacesdeterminedbycomputationalmodellingandxrayabsorptionspectroscopy AT arjenvanveelen uraniumviadsorbatestructuresonportlanditecaohsub2subtypesurfacesdeterminedbycomputationalmodellingandxrayabsorptionspectroscopy AT katherinemorris uraniumviadsorbatestructuresonportlanditecaohsub2subtypesurfacesdeterminedbycomputationalmodellingandxrayabsorptionspectroscopy AT jfredwmosselmans uraniumviadsorbatestructuresonportlanditecaohsub2subtypesurfacesdeterminedbycomputationalmodellingandxrayabsorptionspectroscopy AT royawogelius uraniumviadsorbatestructuresonportlanditecaohsub2subtypesurfacesdeterminedbycomputationalmodellingandxrayabsorptionspectroscopy AT neilaburton uraniumviadsorbatestructuresonportlanditecaohsub2subtypesurfacesdeterminedbycomputationalmodellingandxrayabsorptionspectroscopy |
_version_ |
1718411120957456384 |