LPNet: Retina Inspired Neural Network for Object Detection and Recognition
The detection of rotated objects is a meaningful and challenging research work. Although the state-of-the-art deep learning models have feature invariance, especially convolutional neural networks (CNNs), their architectures did not specifically design for rotation invariance. They only slightly com...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22ae4392f2be4ce8bd028a5ec9a71afd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:22ae4392f2be4ce8bd028a5ec9a71afd |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:22ae4392f2be4ce8bd028a5ec9a71afd2021-11-25T17:25:36ZLPNet: Retina Inspired Neural Network for Object Detection and Recognition10.3390/electronics102228832079-9292https://doaj.org/article/22ae4392f2be4ce8bd028a5ec9a71afd2021-11-01T00:00:00Zhttps://www.mdpi.com/2079-9292/10/22/2883https://doaj.org/toc/2079-9292The detection of rotated objects is a meaningful and challenging research work. Although the state-of-the-art deep learning models have feature invariance, especially convolutional neural networks (CNNs), their architectures did not specifically design for rotation invariance. They only slightly compensate for this feature through pooling layers. In this study, we propose a novel network, named LPNet, to solve the problem of object rotation. LPNet improves the detection accuracy by combining retina-like log-polar transformation. Furthermore, LPNet is a plug-and-play architecture for object detection and recognition. It consists of two parts, which we name as encoder and decoder. An encoder extracts images which feature in log-polar coordinates while a decoder eliminates image noise in cartesian coordinates. Moreover, according to the movement of center points, LPNet has stable and sliding modes. LPNet takes the single-shot multibox detector (SSD) network as the baseline network and the visual geometry group (VGG16) as the feature extraction backbone network. The experiment results show that, compared with conventional SSD networks, the mean average precision (mAP) of LPNet increased by 3.4% for regular objects and by 17.6% for rotated objects.Jie CaoChun BaoQun HaoYang ChengChenglin ChenMDPI AGarticleconvolutional neural networksLPNetretina-likelog-polarobject detection and recognitionElectronicsTK7800-8360ENElectronics, Vol 10, Iss 2883, p 2883 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
convolutional neural networks LPNet retina-like log-polar object detection and recognition Electronics TK7800-8360 |
spellingShingle |
convolutional neural networks LPNet retina-like log-polar object detection and recognition Electronics TK7800-8360 Jie Cao Chun Bao Qun Hao Yang Cheng Chenglin Chen LPNet: Retina Inspired Neural Network for Object Detection and Recognition |
description |
The detection of rotated objects is a meaningful and challenging research work. Although the state-of-the-art deep learning models have feature invariance, especially convolutional neural networks (CNNs), their architectures did not specifically design for rotation invariance. They only slightly compensate for this feature through pooling layers. In this study, we propose a novel network, named LPNet, to solve the problem of object rotation. LPNet improves the detection accuracy by combining retina-like log-polar transformation. Furthermore, LPNet is a plug-and-play architecture for object detection and recognition. It consists of two parts, which we name as encoder and decoder. An encoder extracts images which feature in log-polar coordinates while a decoder eliminates image noise in cartesian coordinates. Moreover, according to the movement of center points, LPNet has stable and sliding modes. LPNet takes the single-shot multibox detector (SSD) network as the baseline network and the visual geometry group (VGG16) as the feature extraction backbone network. The experiment results show that, compared with conventional SSD networks, the mean average precision (mAP) of LPNet increased by 3.4% for regular objects and by 17.6% for rotated objects. |
format |
article |
author |
Jie Cao Chun Bao Qun Hao Yang Cheng Chenglin Chen |
author_facet |
Jie Cao Chun Bao Qun Hao Yang Cheng Chenglin Chen |
author_sort |
Jie Cao |
title |
LPNet: Retina Inspired Neural Network for Object Detection and Recognition |
title_short |
LPNet: Retina Inspired Neural Network for Object Detection and Recognition |
title_full |
LPNet: Retina Inspired Neural Network for Object Detection and Recognition |
title_fullStr |
LPNet: Retina Inspired Neural Network for Object Detection and Recognition |
title_full_unstemmed |
LPNet: Retina Inspired Neural Network for Object Detection and Recognition |
title_sort |
lpnet: retina inspired neural network for object detection and recognition |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/22ae4392f2be4ce8bd028a5ec9a71afd |
work_keys_str_mv |
AT jiecao lpnetretinainspiredneuralnetworkforobjectdetectionandrecognition AT chunbao lpnetretinainspiredneuralnetworkforobjectdetectionandrecognition AT qunhao lpnetretinainspiredneuralnetworkforobjectdetectionandrecognition AT yangcheng lpnetretinainspiredneuralnetworkforobjectdetectionandrecognition AT chenglinchen lpnetretinainspiredneuralnetworkforobjectdetectionandrecognition |
_version_ |
1718412336793911296 |