Home Energy Management Algorithm Based on Deep Reinforcement Learning Using Multistep Prediction
In recent years, home energy management systems (HEMS), which enable the automatic control of electrical equipment and home appliances, have been attracting attention as a method for saving electricity at home. HEMS achieve energy saving by visualizing energy consumption at home and controlling ener...
Guardado en:
Autores principales: | Naoki Kodama, Taku Harada, Kazuteru Miyazaki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22b2c6543c9a4030818574b00c440a55 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
por: Keong-Hun Choi, et al.
Publicado: (2021) -
Implementation of home energy management system based on reinforcement learning
por: Ejaz Ul Haq, et al.
Publicado: (2022) -
Spiking Neural Network Discovers Energy-Efficient Hexapod Motion in Deep Reinforcement Learning
por: Katsumi Naya, et al.
Publicado: (2021) -
Applications of Multi-Agent Deep Reinforcement Learning: Models and Algorithms
por: Abdikarim Mohamed Ibrahim, et al.
Publicado: (2021) -
Practical Algorithmic Trading Using State Representation Learning and Imitative Reinforcement Learning
por: Deog-Yeong Park, et al.
Publicado: (2021)