Robust whole slide image analysis for cervical cancer screening using deep learning

Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable re...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shenghua Cheng, Sibo Liu, Jingya Yu, Gong Rao, Yuwei Xiao, Wei Han, Wenjie Zhu, Xiaohua Lv, Ning Li, Jing Cai, Zehua Wang, Xi Feng, Fei Yang, Xiebo Geng, Jiabo Ma, Xu Li, Ziquan Wei, Xueying Zhang, Tingwei Quan, Shaoqun Zeng, Li Chen, Junbo Hu, Xiuli Liu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/22c2f657a4034084a68ccb9d935f6590
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:22c2f657a4034084a68ccb9d935f6590
record_format dspace
spelling oai:doaj.org-article:22c2f657a4034084a68ccb9d935f65902021-12-02T18:14:09ZRobust whole slide image analysis for cervical cancer screening using deep learning10.1038/s41467-021-25296-x2041-1723https://doaj.org/article/22c2f657a4034084a68ccb9d935f65902021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25296-xhttps://doaj.org/toc/2041-1723Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable results with cytologists.Shenghua ChengSibo LiuJingya YuGong RaoYuwei XiaoWei HanWenjie ZhuXiaohua LvNing LiJing CaiZehua WangXi FengFei YangXiebo GengJiabo MaXu LiZiquan WeiXueying ZhangTingwei QuanShaoqun ZengLi ChenJunbo HuXiuli LiuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shenghua Cheng
Sibo Liu
Jingya Yu
Gong Rao
Yuwei Xiao
Wei Han
Wenjie Zhu
Xiaohua Lv
Ning Li
Jing Cai
Zehua Wang
Xi Feng
Fei Yang
Xiebo Geng
Jiabo Ma
Xu Li
Ziquan Wei
Xueying Zhang
Tingwei Quan
Shaoqun Zeng
Li Chen
Junbo Hu
Xiuli Liu
Robust whole slide image analysis for cervical cancer screening using deep learning
description Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable results with cytologists.
format article
author Shenghua Cheng
Sibo Liu
Jingya Yu
Gong Rao
Yuwei Xiao
Wei Han
Wenjie Zhu
Xiaohua Lv
Ning Li
Jing Cai
Zehua Wang
Xi Feng
Fei Yang
Xiebo Geng
Jiabo Ma
Xu Li
Ziquan Wei
Xueying Zhang
Tingwei Quan
Shaoqun Zeng
Li Chen
Junbo Hu
Xiuli Liu
author_facet Shenghua Cheng
Sibo Liu
Jingya Yu
Gong Rao
Yuwei Xiao
Wei Han
Wenjie Zhu
Xiaohua Lv
Ning Li
Jing Cai
Zehua Wang
Xi Feng
Fei Yang
Xiebo Geng
Jiabo Ma
Xu Li
Ziquan Wei
Xueying Zhang
Tingwei Quan
Shaoqun Zeng
Li Chen
Junbo Hu
Xiuli Liu
author_sort Shenghua Cheng
title Robust whole slide image analysis for cervical cancer screening using deep learning
title_short Robust whole slide image analysis for cervical cancer screening using deep learning
title_full Robust whole slide image analysis for cervical cancer screening using deep learning
title_fullStr Robust whole slide image analysis for cervical cancer screening using deep learning
title_full_unstemmed Robust whole slide image analysis for cervical cancer screening using deep learning
title_sort robust whole slide image analysis for cervical cancer screening using deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/22c2f657a4034084a68ccb9d935f6590
work_keys_str_mv AT shenghuacheng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT siboliu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT jingyayu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT gongrao robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT yuweixiao robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT weihan robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT wenjiezhu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT xiaohualv robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT ningli robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT jingcai robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT zehuawang robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT xifeng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT feiyang robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT xiebogeng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT jiaboma robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT xuli robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT ziquanwei robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT xueyingzhang robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT tingweiquan robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT shaoqunzeng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT lichen robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT junbohu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
AT xiuliliu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning
_version_ 1718378439510065152