Robust whole slide image analysis for cervical cancer screening using deep learning
Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable re...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22c2f657a4034084a68ccb9d935f6590 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:22c2f657a4034084a68ccb9d935f6590 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:22c2f657a4034084a68ccb9d935f65902021-12-02T18:14:09ZRobust whole slide image analysis for cervical cancer screening using deep learning10.1038/s41467-021-25296-x2041-1723https://doaj.org/article/22c2f657a4034084a68ccb9d935f65902021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25296-xhttps://doaj.org/toc/2041-1723Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable results with cytologists.Shenghua ChengSibo LiuJingya YuGong RaoYuwei XiaoWei HanWenjie ZhuXiaohua LvNing LiJing CaiZehua WangXi FengFei YangXiebo GengJiabo MaXu LiZiquan WeiXueying ZhangTingwei QuanShaoqun ZengLi ChenJunbo HuXiuli LiuNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Shenghua Cheng Sibo Liu Jingya Yu Gong Rao Yuwei Xiao Wei Han Wenjie Zhu Xiaohua Lv Ning Li Jing Cai Zehua Wang Xi Feng Fei Yang Xiebo Geng Jiabo Ma Xu Li Ziquan Wei Xueying Zhang Tingwei Quan Shaoqun Zeng Li Chen Junbo Hu Xiuli Liu Robust whole slide image analysis for cervical cancer screening using deep learning |
description |
Computer-assisted diagnosis is key for scaling up cervical cancer screening, but current algorithms perform poorly on whole slide image analysis and generalization. Here, the authors present a WSI classification and top lesion cell recommendation system using deep learning, and achieve comparable results with cytologists. |
format |
article |
author |
Shenghua Cheng Sibo Liu Jingya Yu Gong Rao Yuwei Xiao Wei Han Wenjie Zhu Xiaohua Lv Ning Li Jing Cai Zehua Wang Xi Feng Fei Yang Xiebo Geng Jiabo Ma Xu Li Ziquan Wei Xueying Zhang Tingwei Quan Shaoqun Zeng Li Chen Junbo Hu Xiuli Liu |
author_facet |
Shenghua Cheng Sibo Liu Jingya Yu Gong Rao Yuwei Xiao Wei Han Wenjie Zhu Xiaohua Lv Ning Li Jing Cai Zehua Wang Xi Feng Fei Yang Xiebo Geng Jiabo Ma Xu Li Ziquan Wei Xueying Zhang Tingwei Quan Shaoqun Zeng Li Chen Junbo Hu Xiuli Liu |
author_sort |
Shenghua Cheng |
title |
Robust whole slide image analysis for cervical cancer screening using deep learning |
title_short |
Robust whole slide image analysis for cervical cancer screening using deep learning |
title_full |
Robust whole slide image analysis for cervical cancer screening using deep learning |
title_fullStr |
Robust whole slide image analysis for cervical cancer screening using deep learning |
title_full_unstemmed |
Robust whole slide image analysis for cervical cancer screening using deep learning |
title_sort |
robust whole slide image analysis for cervical cancer screening using deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/22c2f657a4034084a68ccb9d935f6590 |
work_keys_str_mv |
AT shenghuacheng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT siboliu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT jingyayu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT gongrao robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT yuweixiao robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT weihan robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT wenjiezhu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT xiaohualv robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT ningli robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT jingcai robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT zehuawang robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT xifeng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT feiyang robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT xiebogeng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT jiaboma robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT xuli robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT ziquanwei robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT xueyingzhang robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT tingweiquan robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT shaoqunzeng robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT lichen robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT junbohu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning AT xiuliliu robustwholeslideimageanalysisforcervicalcancerscreeningusingdeeplearning |
_version_ |
1718378439510065152 |