PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility

Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Oleksandr Gryshkov, Fedaa AL Halabi, Antonia Isabel Kuhn, Sara Leal-Marin, Lena Julie Freund, Maria Förthmann, Nils Meier, Sven-Alexander Barker, Kirsten Haastert-Talini, Birgit Glasmacher
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/22cdd008d33041c094e8a7a372f64d2e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:22cdd008d33041c094e8a7a372f64d2e
record_format dspace
spelling oai:doaj.org-article:22cdd008d33041c094e8a7a372f64d2e2021-11-11T16:50:47ZPVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility10.3390/ijms2221113731422-00671661-6596https://doaj.org/article/22cdd008d33041c094e8a7a372f64d2e2021-10-01T00:00:00Zhttps://www.mdpi.com/1422-0067/22/21/11373https://doaj.org/toc/1661-6596https://doaj.org/toc/1422-0067Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15–20 wt%) and P(VDF-TrFE) (10–20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the β-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant <i>d</i><sub>33</sub>, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.Oleksandr GryshkovFedaa AL HalabiAntonia Isabel KuhnSara Leal-MarinLena Julie FreundMaria FörthmannNils MeierSven-Alexander BarkerKirsten Haastert-TaliniBirgit GlasmacherMDPI AGarticlepolyvinylidene fluoridepolyvinylidene fluoride-co-trifluoroethyleneelectrospinningscaffoldpiezoelectric moduledynamic impact machineBiology (General)QH301-705.5ChemistryQD1-999ENInternational Journal of Molecular Sciences, Vol 22, Iss 11373, p 11373 (2021)
institution DOAJ
collection DOAJ
language EN
topic polyvinylidene fluoride
polyvinylidene fluoride-co-trifluoroethylene
electrospinning
scaffold
piezoelectric module
dynamic impact machine
Biology (General)
QH301-705.5
Chemistry
QD1-999
spellingShingle polyvinylidene fluoride
polyvinylidene fluoride-co-trifluoroethylene
electrospinning
scaffold
piezoelectric module
dynamic impact machine
Biology (General)
QH301-705.5
Chemistry
QD1-999
Oleksandr Gryshkov
Fedaa AL Halabi
Antonia Isabel Kuhn
Sara Leal-Marin
Lena Julie Freund
Maria Förthmann
Nils Meier
Sven-Alexander Barker
Kirsten Haastert-Talini
Birgit Glasmacher
PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility
description Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15–20 wt%) and P(VDF-TrFE) (10–20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the β-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant <i>d</i><sub>33</sub>, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.
format article
author Oleksandr Gryshkov
Fedaa AL Halabi
Antonia Isabel Kuhn
Sara Leal-Marin
Lena Julie Freund
Maria Förthmann
Nils Meier
Sven-Alexander Barker
Kirsten Haastert-Talini
Birgit Glasmacher
author_facet Oleksandr Gryshkov
Fedaa AL Halabi
Antonia Isabel Kuhn
Sara Leal-Marin
Lena Julie Freund
Maria Förthmann
Nils Meier
Sven-Alexander Barker
Kirsten Haastert-Talini
Birgit Glasmacher
author_sort Oleksandr Gryshkov
title PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility
title_short PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility
title_full PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility
title_fullStr PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility
title_full_unstemmed PVDF and P(VDF-TrFE) Electrospun Scaffolds for Nerve Graft Engineering: A Comparative Study on Piezoelectric and Structural Properties, and In Vitro Biocompatibility
title_sort pvdf and p(vdf-trfe) electrospun scaffolds for nerve graft engineering: a comparative study on piezoelectric and structural properties, and in vitro biocompatibility
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/22cdd008d33041c094e8a7a372f64d2e
work_keys_str_mv AT oleksandrgryshkov pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT fedaaalhalabi pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT antoniaisabelkuhn pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT saralealmarin pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT lenajuliefreund pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT mariaforthmann pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT nilsmeier pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT svenalexanderbarker pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT kirstenhaasterttalini pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
AT birgitglasmacher pvdfandpvdftrfeelectrospunscaffoldsfornervegraftengineeringacomparativestudyonpiezoelectricandstructuralpropertiesandinvitrobiocompatibility
_version_ 1718432227249881088