Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities
Xiaochen Liu1, Minzhi Zhao1, Jingxiong Lu2, Jian Ma4, Jie Wei2, Shicheng Wei1,31Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22d28565e2484eb8838dce2f59bb15e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:22d28565e2484eb8838dce2f59bb15e6 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:22d28565e2484eb8838dce2f59bb15e62021-12-02T04:46:23ZCell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities1176-91141178-2013https://doaj.org/article/22d28565e2484eb8838dce2f59bb15e62012-03-01T00:00:00Zhttp://www.dovepress.com/cell-responses-to-two-kinds-of-nanohydroxyapatite-with-different-sizes-a9436https://doaj.org/toc/1176-9114https://doaj.org/toc/1178-2013Xiaochen Liu1, Minzhi Zhao1, Jingxiong Lu2, Jian Ma4, Jie Wei2, Shicheng Wei1,31Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing, 4Hospital of Stomatology, Tongji University, Shanghai, ChinaIntroduction:Hydroxyapatite (HA) is the principal inorganic constituent of human bone. Due to its good biocompatibility and osteoconductivity, all kinds of HA particles were prepared by different methods. Numerous reports demonstrated that the properties of HA affected its biological effects.Methods: Two kinds of nanohydroxyapatite with different sizes and crystallinities were obtained via a hydrothermal treatment method under different temperatures. It was found that at a temperature of 140°C, a rod-like crystal (n-HA1) with a diameter of 23 ± 5 nm, a length of 47 ± 14 nm, and crystallinity of 85% ± 5% was produced, while at a temperature of 80°C, a rod-like crystal (n-HA2) with a diameter of 16 ± 3 nm, a length of 40 ± 10 nm, and crystallinity of 65% ± 3% was produced. The influence of nanohydroxyapatite size and crystallinity on osteoblast viability was studied by MTT, scanning electron microscopy, and flow cytometry.Results: n-HA1 gave a better biological response than n-HA2 in promoting cell growth and inhibiting cell apoptosis, and also exhibited much more active cell morphology. Alkaline phosphatase activity for both n-HA2 and n-HA1 was obviously higher than for the control, and no significant difference was found between n-HA1 and n-HA2. The same trend was observed on Western blotting for expression of type I collagen and osteopontin. In addition, it was found by transmission electron microscopy that large quantities of n-HA2 entered into the cell and damaged the cellular morphology. Release of tumor necrosis factor alpha from n-HA2 was markedly higher than from n-HA1, indicating that n-HA2 might trigger a severe inflammatory response.Conclusion: This work indicates that not all nanohydroxyapatite should be considered a good biomaterial in future clinical applications.Keywords: nanohydroxyapatite, osteoblast-like cells, cell viability, cell differentiationWei SCWei JMa JLu JXZhao MZLiu XCDove Medical PressarticleMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol 2012, Iss default, Pp 1239-1250 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine (General) R5-920 |
spellingShingle |
Medicine (General) R5-920 Wei SC Wei J Ma J Lu JX Zhao MZ Liu XC Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities |
description |
Xiaochen Liu1, Minzhi Zhao1, Jingxiong Lu2, Jian Ma4, Jie Wei2, Shicheng Wei1,31Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing, 4Hospital of Stomatology, Tongji University, Shanghai, ChinaIntroduction:Hydroxyapatite (HA) is the principal inorganic constituent of human bone. Due to its good biocompatibility and osteoconductivity, all kinds of HA particles were prepared by different methods. Numerous reports demonstrated that the properties of HA affected its biological effects.Methods: Two kinds of nanohydroxyapatite with different sizes and crystallinities were obtained via a hydrothermal treatment method under different temperatures. It was found that at a temperature of 140°C, a rod-like crystal (n-HA1) with a diameter of 23 ± 5 nm, a length of 47 ± 14 nm, and crystallinity of 85% ± 5% was produced, while at a temperature of 80°C, a rod-like crystal (n-HA2) with a diameter of 16 ± 3 nm, a length of 40 ± 10 nm, and crystallinity of 65% ± 3% was produced. The influence of nanohydroxyapatite size and crystallinity on osteoblast viability was studied by MTT, scanning electron microscopy, and flow cytometry.Results: n-HA1 gave a better biological response than n-HA2 in promoting cell growth and inhibiting cell apoptosis, and also exhibited much more active cell morphology. Alkaline phosphatase activity for both n-HA2 and n-HA1 was obviously higher than for the control, and no significant difference was found between n-HA1 and n-HA2. The same trend was observed on Western blotting for expression of type I collagen and osteopontin. In addition, it was found by transmission electron microscopy that large quantities of n-HA2 entered into the cell and damaged the cellular morphology. Release of tumor necrosis factor alpha from n-HA2 was markedly higher than from n-HA1, indicating that n-HA2 might trigger a severe inflammatory response.Conclusion: This work indicates that not all nanohydroxyapatite should be considered a good biomaterial in future clinical applications.Keywords: nanohydroxyapatite, osteoblast-like cells, cell viability, cell differentiation |
format |
article |
author |
Wei SC Wei J Ma J Lu JX Zhao MZ Liu XC |
author_facet |
Wei SC Wei J Ma J Lu JX Zhao MZ Liu XC |
author_sort |
Wei SC |
title |
Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities |
title_short |
Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities |
title_full |
Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities |
title_fullStr |
Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities |
title_full_unstemmed |
Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities |
title_sort |
cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities |
publisher |
Dove Medical Press |
publishDate |
2012 |
url |
https://doaj.org/article/22d28565e2484eb8838dce2f59bb15e6 |
work_keys_str_mv |
AT weisc cellresponsestotwokindsofnanohydroxyapatitewithdifferentsizesandcrystallinities AT weij cellresponsestotwokindsofnanohydroxyapatitewithdifferentsizesandcrystallinities AT maj cellresponsestotwokindsofnanohydroxyapatitewithdifferentsizesandcrystallinities AT lujx cellresponsestotwokindsofnanohydroxyapatitewithdifferentsizesandcrystallinities AT zhaomz cellresponsestotwokindsofnanohydroxyapatitewithdifferentsizesandcrystallinities AT liuxc cellresponsestotwokindsofnanohydroxyapatitewithdifferentsizesandcrystallinities |
_version_ |
1718401052000124928 |