A hierarchical 3D-motion learning framework for animal spontaneous behavior mapping
Animal behavior usually has a hierarchical structure and dynamics. Here, the authors propose a parallel and multi-layered framework to learn the hierarchical dynamics and generate an objective metric to map the behaviour into the feature space.
Enregistré dans:
Auteurs principaux: | Kang Huang, Yaning Han, Ke Chen, Hongli Pan, Gaoyang Zhao, Wenling Yi, Xiaoxi Li, Siyuan Liu, Pengfei Wei, Liping Wang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/22d70b3eba9c46f58c59165575b32afc |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Intelligent Hierarchical Security Framework for VANETs
par: Fábio Gonçalves, et autres
Publié: (2021) -
Rats spontaneously perceive global motion direction of drifting plaids.
par: Giulio Matteucci, et autres
Publié: (2021) -
Liquid metal amoeba with spontaneous pseudopodia formation and motion capability
par: Liang Hu, et autres
Publié: (2017) -
Time-ordering in Heisenberg’s equation of motion as related to spontaneous radiation
par: Benjamin D. Strycker
Publié: (2021) -
Macroscopic helical chirality and self-motion of hierarchical self-assemblies induced by enantiomeric small molecules
par: Yang Yang, et autres
Publié: (2018)