Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study

Abstract In this work, the influence of carbon nanotube (CNT) hybridization on ultraviolet (UV) and gas sensing properties of individual and networked ZnO nanowires (NWs) is investigated in detail. The CNT concentration was varied to achieve optimal conditions for the hybrid with improved sensing pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Oleg Lupan, Fabian Schütt, Vasile Postica, Daria Smazna, Yogendra Kumar Mishra, Rainer Adelung
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/22e79b44f4dd4d4ea02bfd5af9126927
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:22e79b44f4dd4d4ea02bfd5af9126927
record_format dspace
spelling oai:doaj.org-article:22e79b44f4dd4d4ea02bfd5af91269272021-12-02T11:40:51ZSensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study10.1038/s41598-017-14544-02045-2322https://doaj.org/article/22e79b44f4dd4d4ea02bfd5af91269272017-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-14544-0https://doaj.org/toc/2045-2322Abstract In this work, the influence of carbon nanotube (CNT) hybridization on ultraviolet (UV) and gas sensing properties of individual and networked ZnO nanowires (NWs) is investigated in detail. The CNT concentration was varied to achieve optimal conditions for the hybrid with improved sensing properties. In case of CNT decorated ZnO nanonetworks, the influence of relative humidity (RH) and applied bias voltage on the UV sensing properties was thoroughly studied. By rising the CNT content to about 2.0 wt% (with respect to the entire ZnO network) the UV sensing response is considerably increased from 150 to 7300 (about 50 times). With respect to gas sensing, the ZnO-CNT networks demonstrate an excellent selectivity as well as a high gas response to NH3 vapor. A response of 430 to 50 ppm at room temperature was obtained, with an estimated detection limit of about 0.4 ppm. Based on those results, several devices consisting of individual ZnO NWs covered with CNTs were fabricated using a FIB/SEM system. The highest sensing performance was obtained for the finest NW with diameter (D) of 100 nm,  with a response of about 4 to 10 ppm NH3 vapor at room temperature.Oleg LupanFabian SchüttVasile PosticaDaria SmaznaYogendra Kumar MishraRainer AdelungNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-12 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Oleg Lupan
Fabian Schütt
Vasile Postica
Daria Smazna
Yogendra Kumar Mishra
Rainer Adelung
Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study
description Abstract In this work, the influence of carbon nanotube (CNT) hybridization on ultraviolet (UV) and gas sensing properties of individual and networked ZnO nanowires (NWs) is investigated in detail. The CNT concentration was varied to achieve optimal conditions for the hybrid with improved sensing properties. In case of CNT decorated ZnO nanonetworks, the influence of relative humidity (RH) and applied bias voltage on the UV sensing properties was thoroughly studied. By rising the CNT content to about 2.0 wt% (with respect to the entire ZnO network) the UV sensing response is considerably increased from 150 to 7300 (about 50 times). With respect to gas sensing, the ZnO-CNT networks demonstrate an excellent selectivity as well as a high gas response to NH3 vapor. A response of 430 to 50 ppm at room temperature was obtained, with an estimated detection limit of about 0.4 ppm. Based on those results, several devices consisting of individual ZnO NWs covered with CNTs were fabricated using a FIB/SEM system. The highest sensing performance was obtained for the finest NW with diameter (D) of 100 nm,  with a response of about 4 to 10 ppm NH3 vapor at room temperature.
format article
author Oleg Lupan
Fabian Schütt
Vasile Postica
Daria Smazna
Yogendra Kumar Mishra
Rainer Adelung
author_facet Oleg Lupan
Fabian Schütt
Vasile Postica
Daria Smazna
Yogendra Kumar Mishra
Rainer Adelung
author_sort Oleg Lupan
title Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study
title_short Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study
title_full Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study
title_fullStr Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study
title_full_unstemmed Sensing performances of pure and hybridized carbon nanotubes-ZnO nanowire networks: A detailed study
title_sort sensing performances of pure and hybridized carbon nanotubes-zno nanowire networks: a detailed study
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/22e79b44f4dd4d4ea02bfd5af9126927
work_keys_str_mv AT oleglupan sensingperformancesofpureandhybridizedcarbonnanotubesznonanowirenetworksadetailedstudy
AT fabianschutt sensingperformancesofpureandhybridizedcarbonnanotubesznonanowirenetworksadetailedstudy
AT vasilepostica sensingperformancesofpureandhybridizedcarbonnanotubesznonanowirenetworksadetailedstudy
AT dariasmazna sensingperformancesofpureandhybridizedcarbonnanotubesznonanowirenetworksadetailedstudy
AT yogendrakumarmishra sensingperformancesofpureandhybridizedcarbonnanotubesznonanowirenetworksadetailedstudy
AT raineradelung sensingperformancesofpureandhybridizedcarbonnanotubesznonanowirenetworksadetailedstudy
_version_ 1718395507483607040