A deep database of medical abbreviations and acronyms for natural language processing
Measurement(s) Controlled Vocabulary • Linguistic Form Technology Type(s) digital curation • data combination Sample Characteristic - Location United States of America Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14068949
Guardado en:
Autores principales: | Lisa Grossman Liu, Raymond H. Grossman, Elliot G. Mitchell, Chunhua Weng, Karthik Natarajan, George Hripcsak, David K. Vawdrey |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/22f299c14aa7499aaf230bed4f8e868b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatically disambiguating medical acronyms with ontology-aware deep learning
por: Marta Skreta, et al.
Publicado: (2021) -
Contextualizing Universal Theory of Acronym Formation in Kiswahili acronyms
por: Saul S. Bichwa
Publicado: (2021) -
An Acronymic Wilderness
por: Chris Ellis
Publicado: (2016) -
DISCOHAT: An Acronym to Describe the Spectrum of Symptoms Related to Bilateral Vestibulopathy
por: Sophie Paredis, et al.
Publicado: (2021) -
Translating synthetic natural language to database queries with a polyglot deep learning framework
por: Adrián Bazaga, et al.
Publicado: (2021)