Phonon transport in amorphous silicon nanowires

Among the perspective research directions in modern physics, an important role is played by the investigation of amorphous nanostructures [1-3]. The effect of the drop in lattice thermal conductivity in these compounds can be used in thermoelectric applications [4, 5]. It is difficult both theoretic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Crîşmari, Dumitru
Formato: article
Lenguaje:EN
Publicado: D.Ghitu Institute of Electronic Engineering and Nanotechnologies 2012
Materias:
Acceso en línea:https://doaj.org/article/23001895defc474e9b7f7d838ad79ba3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Among the perspective research directions in modern physics, an important role is played by the investigation of amorphous nanostructures [1-3]. The effect of the drop in lattice thermal conductivity in these compounds can be used in thermoelectric applications [4, 5]. It is difficult both theoretically and practically to make in fact a distinction between truly amorphous solids and crystalline solids if the crystal sizes are very small [6]. Even amorphous materials have a certain short-range order at the atomic length scale due to the nature of chemical bonding. Furthermore, in very small crystals, a large fraction of the atoms are located at the crystal surface or near it; relaxation of the surface and interfacial effects distort the atomic positions and decrease the structural order.