Hyperspectral Remote Sensing Image Feature Representation Method Based on CAE-H with Nuclear Norm Constraint
Due to the high dimensionality and high data redundancy of hyperspectral remote sensing images, it is difficult to maintain the nonlinear structural relationship in the dimensionality reduction representation of hyperspectral data. In this paper, a feature representation method based on high order c...
Guardado en:
Autores principales: | Xiaodong Yu, Rui Ding, Jingbo Shao, Xiaohui Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/230209c8db7e4450aaf0b59e755ca927 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
por: Hejar Shahabi, et al.
Publicado: (2021) -
Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
por: Itiya Aneece, et al.
Publicado: (2021) -
Identification and Level Discrimination of Waterlogging Stress in Winter Wheat Using Hyperspectral Remote Sensing
por: YANG Feifei, et al.
Publicado: (2021) -
A Novel Intelligent Fault Diagnosis Method for Rolling Bearings Based on Compressed Sensing and Stacked Multi-Granularity Convolution Denoising Auto-Encoder
por: Chuang Liang, et al.
Publicado: (2021) -
TSInsight: A Local-Global Attribution Framework for Interpretability in Time Series Data
por: Shoaib Ahmed Siddiqui, et al.
Publicado: (2021)