Segmentation of Cerebral Small Vessel Diseases-White Matter Hyperintensities Based on a Deep Learning System
Objective: Reliable quantification of white matter hyperintensities (WHMs) resulting from cerebral small vessel diseases (CSVD) is essential for understanding their clinical impact. We aim to develop and clinically validate a deep learning system for automatic segmentation of CSVD-WMH from fluid-att...
Guardado en:
Autores principales: | Wei Shan, Yunyun Duan, Yu Zheng, Zhenzhou Wu, Shang Wei Chan, Qun Wang, Peiyi Gao, Yaou Liu, Kunlun He, Yongjun Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/230212472b924008b293542052464307 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Obesity and Race May Explain Differential Burden of White Matter Hyperintensity Load
por: Seixas AA, et al.
Publicado: (2021) -
Differential effects of a computerized cognitive stimulation program on older adults with mild cognitive impairment according to the severity of white matter hyperintensities
por: Djabelkhir-Jemmi L, et al.
Publicado: (2018) -
Density abnormalities in normal-appearing gray matter in the middle-aged brain with white matter hyperintense lesions: a DARTEL-enhanced voxel-based morphometry study
por: Peng Y, et al.
Publicado: (2016) -
Imaging Markers of Subcortical Vascular Dementia in Patients With Multiple-Lobar Cerebral Microbleeds
por: Chia-Yen Lin, et al.
Publicado: (2021) -
Aortic stiffness and brain integrity in elderly patients with cognitive and functional complaints
por: Tap L, et al.
Publicado: (2018)