Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning
Machine learning is the discipline of learning commands in the computer machine to predict and expect the results of real application and is currently the most promising simulation in artificial intelligence. This paper aims at using different algorithms to calculate and predict the compressive stre...
Enregistré dans:
Auteurs principaux: | Hamed Izadgoshasb, Amirreza Kandiri, Pshtiwan Shakor, Vittoria Laghi, Giada Gasparini |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/230e30dcbcbb4d04aaab068db5d640a4 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Computational Model for Estimating the Compressive Strength of Mortars Admixed with Mineral Materials
par: Hosein Naderpour, et autres
Publié: (2018) -
Long-term properties of cement mortar under compression, tension, and 3-point bending
par: Sprince Andina, et autres
Publié: (2021) -
Experimental Assessment of Using Micro-Non Air Bubble (MINAB) and Super-Plasticizer on Setting Time and Compressive Strength of Cement Mortar
par: Jalil Shafaei, et autres
Publié: (2021) -
Effects of mortar compressive strength on out of plane response of unreinforced masonry walls
par: Pourmohammad Sorkhab,Atabak, et autres
Publié: (2021) -
Investigation of the Effect of Nano-Silica on the Compressive and Flexural Strength of Cement Mortar Reinforced with Polypropylene Fibers
par: meisam fazlavi, et autres
Publié: (2020)