Predicting Compressive Strength of 3D Printed Mortar in Structural Members Using Machine Learning
Machine learning is the discipline of learning commands in the computer machine to predict and expect the results of real application and is currently the most promising simulation in artificial intelligence. This paper aims at using different algorithms to calculate and predict the compressive stre...
Guardado en:
Autores principales: | Hamed Izadgoshasb, Amirreza Kandiri, Pshtiwan Shakor, Vittoria Laghi, Giada Gasparini |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/230e30dcbcbb4d04aaab068db5d640a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Computational Model for Estimating the Compressive Strength of Mortars Admixed with Mineral Materials
por: Hosein Naderpour, et al.
Publicado: (2018) -
Long-term properties of cement mortar under compression, tension, and 3-point bending
por: Sprince Andina, et al.
Publicado: (2021) -
Experimental Assessment of Using Micro-Non Air Bubble (MINAB) and Super-Plasticizer on Setting Time and Compressive Strength of Cement Mortar
por: Jalil Shafaei, et al.
Publicado: (2021) -
Effects of mortar compressive strength on out of plane response of unreinforced masonry walls
por: Pourmohammad Sorkhab,Atabak, et al.
Publicado: (2021) -
Investigation of the Effect of Nano-Silica on the Compressive and Flexural Strength of Cement Mortar Reinforced with Polypropylene Fibers
por: meisam fazlavi, et al.
Publicado: (2020)