Detecting Phase-Synchrony Connectivity Anomalies in EEG Signals. Application to Dyslexia Diagnosis
Objective Dyslexia diagnosis is a challenging task, since traditional diagnosis methods are not based on biological markers but on behavioural tests. Although dyslexia diagnosis has been addressed by these tests in clinical practice, it is difficult to extract information about the brain processes i...
Guardado en:
Autores principales: | Marco A. Formoso, Andrés Ortiz, Francisco J. Martinez-Murcia, Nicolás Gallego, Juan L. Luque |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2312058bb83340f0b9fdc135188d57e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
New Bouguer Anomaly Map for the Territory of the Slovenia
por: Klemen Medved, et al.
Publicado: (2021) -
An Efficient and Robust Framework for Hyperspectral Anomaly Detection
por: Linbo Tang, et al.
Publicado: (2021) -
Anomaly Detection on Data Streams for Smart Agriculture
por: Juliet Chebet Moso, et al.
Publicado: (2021) -
Cognitive Training on the Solving of Mathematical Problems: An EEG Study in Young Men
por: Jahaziel Molina, et al.
Publicado: (2021) -
Anomaly Detection for the Centralised Elasticsearch Service at CERN
por: Jennifer R. Andersson, et al.
Publicado: (2021)