Low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles

Katja Heise,1,2 Mathias Hobisch,3,4 Liviu Sacarescu,5 Uros Maver,6 Josefine Hobisch,3 Tobias Reichelt,7 Marija Sega,6 Steffen Fischer,1 Stefan Spirk3,4 Members of EPNOE and NAWI Graz 1Institute of Plant and Wood Chemistry, Technische Universität Dresden, Tharandt, Germany; 2Department of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Heise K, Hobisch M, Sacarescu L, Maver U, Hobisch J, Reichelt T, Sega M, Fischer S, Spirk S
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://doaj.org/article/2315fc8251524d369b30ff280bdc9575
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2315fc8251524d369b30ff280bdc9575
record_format dspace
spelling oai:doaj.org-article:2315fc8251524d369b30ff280bdc95752021-12-02T06:06:47ZLow-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles1178-2013https://doaj.org/article/2315fc8251524d369b30ff280bdc95752018-08-01T00:00:00Zhttps://www.dovepress.com/low-molecular-weight-sulfonated-chitosan-as-template-for-anticoagulant-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Katja Heise,1,2 Mathias Hobisch,3,4 Liviu Sacarescu,5 Uros Maver,6 Josefine Hobisch,3 Tobias Reichelt,7 Marija Sega,6 Steffen Fischer,1 Stefan Spirk3,4 Members of EPNOE and NAWI Graz 1Institute of Plant and Wood Chemistry, Technische Universität Dresden, Tharandt, Germany; 2Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland; 3Institute for Chemistry and Technology of Materials, Graz University of Technology, Graz, Austria; 4Institute for Paper, Pulp and Fiber Technology, Graz University of Technology, Graz, Austria; 5“Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Iasi, Romania; 6Faculty of Medicine, University of Maribor, Maribor, Slovenia; 7Zentrum für Bucherhaltung GmbH, Leipzig, Germany Purpose: In this work, low-molecular-weight sulfoethyl chitosan (SECS) was used as a model template for the generation of silver core-shell nanoparticles with high potential as anticoagulants for medical applications. Materials and methods: SECS were synthesized by two reaction pathways, namely Michael addition and a nucleophilic substitution with sodium vinylsulfonate or sodium 2-bromoethanesulfonate (NaBES). Subsequently, these derivatives were used as reducing and capping agents for silver nanoparticles in a microwave-assisted reaction. The formed silver-chitosan core-shell particles were further surveyed in terms of their anticoagulant action by different coagulation assays focusing on the inhibition of either thrombin or cofactor Xa. Results: In-depth characterization revealed a sulfoalkylation of chitosan mainly on its sterically favored O6-position. Moreover, comparably high average degrees of substitution with sulfoethyl groups (DSSE) of up to 1.05 were realized in reactions with NaBES. The harsh reaction conditions led to significant chain degradation and consequently, SECS exhibits masses of <50 kDa. Throughout the following microwave reaction, stable nanoparticles were obtained only from highly substituted products because they provide a sufficient charge density that prevented particles from aggregation. High-resolution transmission electron microscopy images reveal that the silver core (diameter ~8 nm) is surrounded by a 1–2 nm thick SECS layer. These core-shell particles and the SECS itself exhibit an inhibiting activity, especially on cofactor Xa. Conclusion: This interesting model system enabled the investigation of structure–property correlations in the course of nanoparticle formation and anticoagulant activity of SECS and may lead to completely new anticoagulants on the basis of chitosan-capped nanoparticles. Keywords: chitosan ethylsulfonate, silver nanoparticles, antithrombotic activity, cofactor XaHeise KHobisch MSacarescu LMaver UHobisch JReichelt TSega MFischer SSpirk SDove Medical Pressarticlechitosan ethylsulfonatesilver nanoparticlesantithrombotic activitycofactor XaMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 4881-4894 (2018)
institution DOAJ
collection DOAJ
language EN
topic chitosan ethylsulfonate
silver nanoparticles
antithrombotic activity
cofactor Xa
Medicine (General)
R5-920
spellingShingle chitosan ethylsulfonate
silver nanoparticles
antithrombotic activity
cofactor Xa
Medicine (General)
R5-920
Heise K
Hobisch M
Sacarescu L
Maver U
Hobisch J
Reichelt T
Sega M
Fischer S
Spirk S
Low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles
description Katja Heise,1,2 Mathias Hobisch,3,4 Liviu Sacarescu,5 Uros Maver,6 Josefine Hobisch,3 Tobias Reichelt,7 Marija Sega,6 Steffen Fischer,1 Stefan Spirk3,4 Members of EPNOE and NAWI Graz 1Institute of Plant and Wood Chemistry, Technische Universität Dresden, Tharandt, Germany; 2Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland; 3Institute for Chemistry and Technology of Materials, Graz University of Technology, Graz, Austria; 4Institute for Paper, Pulp and Fiber Technology, Graz University of Technology, Graz, Austria; 5“Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, Iasi, Romania; 6Faculty of Medicine, University of Maribor, Maribor, Slovenia; 7Zentrum für Bucherhaltung GmbH, Leipzig, Germany Purpose: In this work, low-molecular-weight sulfoethyl chitosan (SECS) was used as a model template for the generation of silver core-shell nanoparticles with high potential as anticoagulants for medical applications. Materials and methods: SECS were synthesized by two reaction pathways, namely Michael addition and a nucleophilic substitution with sodium vinylsulfonate or sodium 2-bromoethanesulfonate (NaBES). Subsequently, these derivatives were used as reducing and capping agents for silver nanoparticles in a microwave-assisted reaction. The formed silver-chitosan core-shell particles were further surveyed in terms of their anticoagulant action by different coagulation assays focusing on the inhibition of either thrombin or cofactor Xa. Results: In-depth characterization revealed a sulfoalkylation of chitosan mainly on its sterically favored O6-position. Moreover, comparably high average degrees of substitution with sulfoethyl groups (DSSE) of up to 1.05 were realized in reactions with NaBES. The harsh reaction conditions led to significant chain degradation and consequently, SECS exhibits masses of <50 kDa. Throughout the following microwave reaction, stable nanoparticles were obtained only from highly substituted products because they provide a sufficient charge density that prevented particles from aggregation. High-resolution transmission electron microscopy images reveal that the silver core (diameter ~8 nm) is surrounded by a 1–2 nm thick SECS layer. These core-shell particles and the SECS itself exhibit an inhibiting activity, especially on cofactor Xa. Conclusion: This interesting model system enabled the investigation of structure–property correlations in the course of nanoparticle formation and anticoagulant activity of SECS and may lead to completely new anticoagulants on the basis of chitosan-capped nanoparticles. Keywords: chitosan ethylsulfonate, silver nanoparticles, antithrombotic activity, cofactor Xa
format article
author Heise K
Hobisch M
Sacarescu L
Maver U
Hobisch J
Reichelt T
Sega M
Fischer S
Spirk S
author_facet Heise K
Hobisch M
Sacarescu L
Maver U
Hobisch J
Reichelt T
Sega M
Fischer S
Spirk S
author_sort Heise K
title Low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles
title_short Low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles
title_full Low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles
title_fullStr Low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles
title_full_unstemmed Low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles
title_sort low-molecular-weight sulfonated chitosan as template for anticoagulant nanoparticles
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/2315fc8251524d369b30ff280bdc9575
work_keys_str_mv AT heisek lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT hobischm lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT sacarescul lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT maveru lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT hobischj lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT reicheltt lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT segam lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT fischers lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
AT spirks lowmolecularweightsulfonatedchitosanastemplateforanticoagulantnanoparticles
_version_ 1718400039976435712