Prediction of inhibitory activity of epidermal growth factor receptor inhibitors using grid search-projection pursuit regression method.
The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is an important protein target for anti-tumor drug discovery. To identify potential EGFR inhibitors, we conducted a quantitative structure-activity relationship (QSAR) study on the inhibitory activity of a series of quinazolin...
Guardado en:
Autores principales: | Hongying Du, Zhide Hu, Andrea Bazzoli, Yang Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2325bfb67462429095bc9e7c32132b3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Tree-Structured Regression Model Using a Projection Pursuit Approach
por: Hyunsun Cho, et al.
Publicado: (2021) -
Hydration effects on the efficacy of the Epidermal growth factor receptor kinase inhibitor afatinib
por: Srinivasaraghavan Kannan, et al.
Publicado: (2017) -
Design of New Quinazoline Derivative as EGFR (Epidermal Growth Factor Receptor) Inhibitor through Molecular Docking and Dynamics Simulation
por: Herlina Rasyid, et al.
Publicado: (2020) -
Molecular function recognition by supervised projection pursuit machine learning
por: Tyler Grear, et al.
Publicado: (2021) -
Block Newtonised orthogonal matching pursuit for off‐grid DOA estimation in the presence of unknown mutual coupling
por: Wen‐Gen Tang, et al.
Publicado: (2021)