EEG Mental Recognition Based on RKHS Learning and Source Dictionary Regularized RKHS Subspace Learning
This article mainly studies Electroencephalogram (EEG) mental recognition. Because the human brain is very complex and the EEG signal is greatly affected by the environment, EEG mental recognition can be attributed to domain adaptative problems. Our main work is as follows: (1) At present, most doma...
Guardado en:
Autores principales: | Wenjie Lei, Zhengming Ma, Shuyu Liu, Yuanping Lin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/233b466ea9994c6cb2c50f513e3d2de3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Domain Adaption Based on Symmetric Matrices Space Bi-Subspace Learning and Source Linear Discriminant Analysis Regularization
por: Qian Li, et al.
Publicado: (2021) -
Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
por: Xiang Hu, et al.
Publicado: (2021) -
An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification
por: Zhanzhong Wang, et al.
Publicado: (2020) -
Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification
por: Yangqianhui Zhang, et al.
Publicado: (2021) -
Deep Large Margin Nearest Neighbor for Gait Recognition
por: Xu Wanjiang
Publicado: (2021)