EEG Mental Recognition Based on RKHS Learning and Source Dictionary Regularized RKHS Subspace Learning
This article mainly studies Electroencephalogram (EEG) mental recognition. Because the human brain is very complex and the EEG signal is greatly affected by the environment, EEG mental recognition can be attributed to domain adaptative problems. Our main work is as follows: (1) At present, most doma...
Enregistré dans:
Auteurs principaux: | Wenjie Lei, Zhengming Ma, Shuyu Liu, Yuanping Lin |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/233b466ea9994c6cb2c50f513e3d2de3 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Domain Adaption Based on Symmetric Matrices Space Bi-Subspace Learning and Source Linear Discriminant Analysis Regularization
par: Qian Li, et autres
Publié: (2021) -
Deep Spatial-Spectral Subspace Clustering for Hyperspectral Images Based on Contrastive Learning
par: Xiang Hu, et autres
Publié: (2021) -
An Improved Selective Ensemble Learning Method for Highway Traffic Flow State Identification
par: Zhanzhong Wang, et autres
Publié: (2020) -
Random Subspace Ensembles of Fully Convolutional Network for Time Series Classification
par: Yangqianhui Zhang, et autres
Publié: (2021) -
Deep Large Margin Nearest Neighbor for Gait Recognition
par: Xu Wanjiang
Publié: (2021)