Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites
Natural rubber (NR) vulcanizates reinforced by carbon nanotubes (CNT, 3 phr), graphite particles (GP) and CNT/GP hybrid filler (varied GP 0–50 phr) were prepared. The stress relaxation behaviors of various filled samples were characterized by the novel temperature scanning stress relaxation (TSSR) t...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2341e8ff4c864dd0bd5e929c511b0abe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:2341e8ff4c864dd0bd5e929c511b0abe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:2341e8ff4c864dd0bd5e929c511b0abe2021-11-24T04:25:39ZInfluences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites0142-941810.1016/j.polymertesting.2020.106981https://doaj.org/article/2341e8ff4c864dd0bd5e929c511b0abe2021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0142941820322108https://doaj.org/toc/0142-9418Natural rubber (NR) vulcanizates reinforced by carbon nanotubes (CNT, 3 phr), graphite particles (GP) and CNT/GP hybrid filler (varied GP 0–50 phr) were prepared. The stress relaxation behaviors of various filled samples were characterized by the novel temperature scanning stress relaxation (TSSR) technique to elucidate the state and degree of filler dispersion based on initial relaxation modulus, bound rubber, and thermal stability. The incorporation of CNT/GP hybrid filler in NR matrix improved relaxation modulus, bound rubber, and thermal stability of the nanocomposites. The CNT particles in the hybrid composites prevented the re-agglomeration of dispersed GP after mixing by a thermodynamic effect. It was found that a combination of 3 phr CNT and 30 ph GP gave superior properties to NR vulcanizates. That is, good dispersion and distribution of CNT and GP in the NR matrix provided further significant improvements in electrical conductivity and dielectric constant of the nanocomposites. The NR nanocomposites with high conductivity and low dielectric constant seems to be a semi-conductive substrate to be used in many electrical devices.Wasuthon KitisavetjitYeampon NakaramontriSkulrat PichaiyutSuwaluk WisunthornCharoen NakasonSuda KiatkamjornwongElsevierarticleCNT hybrid graphiteNatural rubberNanocompositesElectrical propertiesStress relaxationPolymers and polymer manufactureTP1080-1185ENPolymer Testing, Vol 93, Iss , Pp 106981- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
CNT hybrid graphite Natural rubber Nanocomposites Electrical properties Stress relaxation Polymers and polymer manufacture TP1080-1185 |
spellingShingle |
CNT hybrid graphite Natural rubber Nanocomposites Electrical properties Stress relaxation Polymers and polymer manufacture TP1080-1185 Wasuthon Kitisavetjit Yeampon Nakaramontri Skulrat Pichaiyut Suwaluk Wisunthorn Charoen Nakason Suda Kiatkamjornwong Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites |
description |
Natural rubber (NR) vulcanizates reinforced by carbon nanotubes (CNT, 3 phr), graphite particles (GP) and CNT/GP hybrid filler (varied GP 0–50 phr) were prepared. The stress relaxation behaviors of various filled samples were characterized by the novel temperature scanning stress relaxation (TSSR) technique to elucidate the state and degree of filler dispersion based on initial relaxation modulus, bound rubber, and thermal stability. The incorporation of CNT/GP hybrid filler in NR matrix improved relaxation modulus, bound rubber, and thermal stability of the nanocomposites. The CNT particles in the hybrid composites prevented the re-agglomeration of dispersed GP after mixing by a thermodynamic effect. It was found that a combination of 3 phr CNT and 30 ph GP gave superior properties to NR vulcanizates. That is, good dispersion and distribution of CNT and GP in the NR matrix provided further significant improvements in electrical conductivity and dielectric constant of the nanocomposites. The NR nanocomposites with high conductivity and low dielectric constant seems to be a semi-conductive substrate to be used in many electrical devices. |
format |
article |
author |
Wasuthon Kitisavetjit Yeampon Nakaramontri Skulrat Pichaiyut Suwaluk Wisunthorn Charoen Nakason Suda Kiatkamjornwong |
author_facet |
Wasuthon Kitisavetjit Yeampon Nakaramontri Skulrat Pichaiyut Suwaluk Wisunthorn Charoen Nakason Suda Kiatkamjornwong |
author_sort |
Wasuthon Kitisavetjit |
title |
Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites |
title_short |
Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites |
title_full |
Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites |
title_fullStr |
Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites |
title_full_unstemmed |
Influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites |
title_sort |
influences of carbon nanotubes and graphite hybrid filler on properties of natural rubber nanocomposites |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/2341e8ff4c864dd0bd5e929c511b0abe |
work_keys_str_mv |
AT wasuthonkitisavetjit influencesofcarbonnanotubesandgraphitehybridfilleronpropertiesofnaturalrubbernanocomposites AT yeamponnakaramontri influencesofcarbonnanotubesandgraphitehybridfilleronpropertiesofnaturalrubbernanocomposites AT skulratpichaiyut influencesofcarbonnanotubesandgraphitehybridfilleronpropertiesofnaturalrubbernanocomposites AT suwalukwisunthorn influencesofcarbonnanotubesandgraphitehybridfilleronpropertiesofnaturalrubbernanocomposites AT charoennakason influencesofcarbonnanotubesandgraphitehybridfilleronpropertiesofnaturalrubbernanocomposites AT sudakiatkamjornwong influencesofcarbonnanotubesandgraphitehybridfilleronpropertiesofnaturalrubbernanocomposites |
_version_ |
1718415963990261760 |