Suggestion for a new deterministic model coupled with machine learning techniques for landslide susceptibility mapping
Abstract Deterministic models have been widely applied in landslide risk assessment (LRA), but they have limitations in obtaining various geotechnical and hydraulic properties. The objective of this study is to suggest a new deterministic method based on machine learning (ML) algorithms. Eight cruci...
Guardado en:
Autores principales: | Dae-Hong Min, Hyung-Koo Yoon |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23486316c6a74f17ba1620bd2de21987 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The importance of input data on landslide susceptibility mapping
por: Krzysztof Gaidzik, et al.
Publicado: (2021) -
Landslide Susceptibility Prediction Based on Positive Unlabeled Learning Coupled With Adaptive Sampling
por: Zhice Fang, et al.
Publicado: (2021) -
Landslide susceptibility maps of Santiago city Andean foothills, Chile
por: Lara,Marisol, et al.
Publicado: (2018) -
Assessing and mapping multi-hazard risk susceptibility using a machine learning technique
por: Hamid Reza Pourghasemi, et al.
Publicado: (2020) -
Evaluating underlying causative factors for earthquake-induced landslides and landslide susceptibility mapping in Upper Indrawati Watershed, Nepal
por: Pawan Gautam, et al.
Publicado: (2021)