Multiscale classification of heart failure phenotypes by unsupervised clustering of unstructured electronic medical record data
Abstract As a leading cause of death and morbidity, heart failure (HF) is responsible for a large portion of healthcare and disability costs worldwide. Current approaches to define specific HF subpopulations may fail to account for the diversity of etiologies, comorbidities, and factors driving dise...
Guardado en:
Autores principales: | Tasha Nagamine, Brian Gillette, Alexey Pakhomov, John Kahoun, Hannah Mayer, Rolf Burghaus, Jörg Lippert, Mayur Saxena |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2355c0f45efd42518c247a2a9b65c245 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unsupervised clustering and epigenetic classification of single cells
por: Mahdi Zamanighomi, et al.
Publicado: (2018) -
Benchmark and application of unsupervised classification approaches for univariate data
por: Maria El Abbassi, et al.
Publicado: (2021) -
A tree based approach for multi-class classification of surgical procedures using structured and unstructured data
por: Tannaz Khaleghi, et al.
Publicado: (2021) -
Unsupervised vector-based classification of single-molecule charge transport data
por: Mario Lemmer, et al.
Publicado: (2016) -
Numerical approach for unstructured quantum key distribution
por: Patrick J. Coles, et al.
Publicado: (2016)