MRI-derived radiomics model for baseline prediction of prostate cancer progression on active surveillance
Abstract Nearly half of patients with prostate cancer (PCa) harbour low- or intermediate-risk disease considered suitable for active surveillance (AS). However, up to 44% of patients discontinue AS within the first five years, highlighting the unmet clinical need for robust baseline risk-stratificat...
Guardado en:
Autores principales: | Nikita Sushentsev, Leonardo Rundo, Oleg Blyuss, Vincent J. Gnanapragasam, Evis Sala, Tristan Barrett |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2360cbf0331a41b6971d9ab39fa8b035 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The effect of gadolinium-based contrast agent administration on magnetic resonance fingerprinting-based T1 relaxometry in patients with prostate cancer
por: Nikita Sushentsev, et al.
Publicado: (2020) -
Robustness of radiomic features in CT images with different slice thickness, comparing liver tumour and muscle
por: Lorena Escudero Sanchez, et al.
Publicado: (2021) -
Impact of GAN-based lesion-focused medical image super-resolution on the robustness of radiomic features
por: Erick Costa de Farias, et al.
Publicado: (2021) -
Reproducibility of CT-based radiomic features against image resampling and perturbations for tumour and healthy kidney in renal cancer patients
por: Margherita Mottola, et al.
Publicado: (2021) -
Radiomics feature robustness as measured using an MRI phantom
por: Joonsang Lee, et al.
Publicado: (2021)