Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence
Abstract The emergence of digital pathology has opened new horizons for histopathology. Artificial intelligence (AI) algorithms are able to operate on digitized slides to assist pathologists with different tasks. Whereas AI-involving classification and segmentation methods have obvious benefits for...
Guardado en:
Autores principales: | Shivam Kalra, H. R. Tizhoosh, Sultaan Shah, Charles Choi, Savvas Damaskinos, Amir Safarpoor, Sobhan Shafiei, Morteza Babaie, Phedias Diamandis, Clinton J. V. Campbell, Liron Pantanowitz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/236179d0be3f4c138cb25ddc2e00fa92 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pulmonary actinomycosis: cytomorphological features
por: Rafael Martínez-Girón, et al.
Publicado: (2021) -
Precision histology: how deep learning is poised to revitalize histomorphology for personalized cancer care
por: Ugljesa Djuric, et al.
Publicado: (2017) -
Correlation Between the Dermoscopic Features and the Histopathological Features of Common Erythematosquamous Skin Diseases: the Consensus Statement of Chinese Experts (2021)
por: Dermatology Branch of China International Exchange and Promoting Association for Medical and Health Care, et al.
Publicado: (2021) -
La Gazette des archives, « Archives des jeunesses, jeunesses des archives »
por: Pascal Carreau
Publicado: (2016) -
New-Onset and Relapsed Kidney Histopathology Following COVID-19 Vaccination: A Systematic Review
por: Henry H. L. Wu, et al.
Publicado: (2021)