Laplacian eigenfunctions learn population structure.
Principal components analysis has been used for decades to summarize genetic variation across geographic regions and to infer population migration history. More recently, with the advent of genome-wide association studies of complex traits, it has become a commonly-used tool for detection and correc...
Guardado en:
Autores principales: | Jun Zhang, Partha Niyogi, Mary Sara McPeek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/236e0ddf8d7c493dbbdd105857e12881 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Ancestral informative marker selection and population structure visualization using sparse Laplacian eigenfunctions.
por: Jun Zhang
Publicado: (2010) -
Vortex knots in tangled quantum eigenfunctions
por: Alexander J. Taylor, et al.
Publicado: (2016) -
Localization of Laplacian eigenvectors on random networks
por: Shigefumi Hata, et al.
Publicado: (2017) -
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
por: Erik M. Bollt, et al.
Publicado: (2021) -
Anharmonic quantum nuclear densities from full dimensional vibrational eigenfunctions with application to protonated glycine
por: Chiara Aieta, et al.
Publicado: (2020)