Femoral Shape and Size Variability from segmented CT datasets for patient-specific THA planning

Biomechanical functionality of artificial hips strongly correlates with quality of life of patients after total hip arthroplasty. As the numbers of total hip arthroplasty are growing due to increasing life expectancy, biomechanical research is of utmost importance to improve the implants used and th...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Fleischmann Christopher, Leher Irina, Sesselmann Stefan, Scherb David, Wolf Alexander, Miehling Jörg, Wartzack Sandro
Format: article
Langue:EN
Publié: De Gruyter 2020
Sujets:
R
Accès en ligne:https://doaj.org/article/237e6c7f21d84bcf8bc1539250b2f03a
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Biomechanical functionality of artificial hips strongly correlates with quality of life of patients after total hip arthroplasty. As the numbers of total hip arthroplasty are growing due to increasing life expectancy, biomechanical research is of utmost importance to improve the implants used and the operative procedures applied. Multibody simulation is used to predict forces and moments inside the human body. Generic scaling is usually performed to adapt the human models used in multibody simulation to individual patients. However, since the shape and size of the bones can vary considerably, this type of scaling often is not sufficient. In this work various CT datasets were used to quantify differences of individual femoral shapes, especially with regard to important biomechanical hip parameters, such as the CCD angle or the femoral offset. Our results prove that multibody simulations should be modeled more patientspecific to be able to calculate articular forces and moments more precisely, and thus, to improve surgical planning.