Stabilizing nanolasers via polarization lifetime tuning

Abstract We investigate the emission dynamics of mutually coupled nanolasers and predict ways to optimize their stability, i.e., maximize their locking range. We find that tuning the cavity lifetime to the same order of magnitude as the dephasing time of the microscopic polarization yields optimal o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Aycke Roos, Stefan Meinecke, Kathy Lüdge
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/2384e4dbefa148babbeb6af9ed7aaee8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2384e4dbefa148babbeb6af9ed7aaee8
record_format dspace
spelling oai:doaj.org-article:2384e4dbefa148babbeb6af9ed7aaee82021-12-02T15:15:40ZStabilizing nanolasers via polarization lifetime tuning10.1038/s41598-021-97757-82045-2322https://doaj.org/article/2384e4dbefa148babbeb6af9ed7aaee82021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97757-8https://doaj.org/toc/2045-2322Abstract We investigate the emission dynamics of mutually coupled nanolasers and predict ways to optimize their stability, i.e., maximize their locking range. We find that tuning the cavity lifetime to the same order of magnitude as the dephasing time of the microscopic polarization yields optimal operation conditions, which allow for wider tuning ranges than usually observed in conventional semiconductor lasers. The lasers are modeled by Maxwell–Bloch type class-C equations. For our analysis, we analytically determine the steady state solutions, analyze the symmetries of the system and numerically characterize the emission dynamics via the underlying bifurcation structure. The polarization lifetime is found to be a crucial parameter, which impacts the observed dynamics in the parameter space spanned by frequency detuning, coupling strength and coupling phase.Aycke RoosStefan MeineckeKathy LüdgeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Aycke Roos
Stefan Meinecke
Kathy Lüdge
Stabilizing nanolasers via polarization lifetime tuning
description Abstract We investigate the emission dynamics of mutually coupled nanolasers and predict ways to optimize their stability, i.e., maximize their locking range. We find that tuning the cavity lifetime to the same order of magnitude as the dephasing time of the microscopic polarization yields optimal operation conditions, which allow for wider tuning ranges than usually observed in conventional semiconductor lasers. The lasers are modeled by Maxwell–Bloch type class-C equations. For our analysis, we analytically determine the steady state solutions, analyze the symmetries of the system and numerically characterize the emission dynamics via the underlying bifurcation structure. The polarization lifetime is found to be a crucial parameter, which impacts the observed dynamics in the parameter space spanned by frequency detuning, coupling strength and coupling phase.
format article
author Aycke Roos
Stefan Meinecke
Kathy Lüdge
author_facet Aycke Roos
Stefan Meinecke
Kathy Lüdge
author_sort Aycke Roos
title Stabilizing nanolasers via polarization lifetime tuning
title_short Stabilizing nanolasers via polarization lifetime tuning
title_full Stabilizing nanolasers via polarization lifetime tuning
title_fullStr Stabilizing nanolasers via polarization lifetime tuning
title_full_unstemmed Stabilizing nanolasers via polarization lifetime tuning
title_sort stabilizing nanolasers via polarization lifetime tuning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2384e4dbefa148babbeb6af9ed7aaee8
work_keys_str_mv AT ayckeroos stabilizingnanolasersviapolarizationlifetimetuning
AT stefanmeinecke stabilizingnanolasersviapolarizationlifetimetuning
AT kathyludge stabilizingnanolasersviapolarizationlifetimetuning
_version_ 1718387496462581760