Basic Fundamental Formulas for Wiener Transforms Associated with a Pair of Operators on Hilbert Space

Segal introduce the Fourier–Wiener transform for the class of polynomial cylinder functions on Hilbert space, and Hida then develop this concept. Negrin define the extended Wiener transform with Hayker et al. In recent papers, Hayker et al. establish the existence, the composition formula, the inver...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Hyun Soo Chung
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/23858e7822274af88cd0ecbe5e3f0afa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Segal introduce the Fourier–Wiener transform for the class of polynomial cylinder functions on Hilbert space, and Hida then develop this concept. Negrin define the extended Wiener transform with Hayker et al. In recent papers, Hayker et al. establish the existence, the composition formula, the inversion formula, and the Parseval relation for the Wiener transform. But, they do not establish homomorphism properties for the Wiener transform. In this paper, the author establishes some basic fundamental formulas for the Wiener transform via some concepts and motivations introduced by Segal and used by Hayker et al. We then state the usefulness of basic fundamental formulas as some applications.