Unsupervised multi-source domain adaptation with no observable source data.
Given trained models from multiple source domains, how can we predict the labels of unlabeled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims for predicting the labels of unlabeled target data by transferring the knowledge of multiple source domains. UMDA is a crucia...
Guardado en:
Autores principales: | Hyunsik Jeon, Seongmin Lee, U Kang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23a4fccc91304804b1a1b90f9f7b92e7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Multi-EPL: Accurate multi-source domain adaptation.
por: Seongmin Lee, et al.
Publicado: (2021) -
Improving Unsupervised Domain Adaptive Re-Identification Via Source-Guided Selection of Pseudo-Labeling Hyperparameters
por: Fabian Dubourvieux, et al.
Publicado: (2021) -
B-SOiD, an open-source unsupervised algorithm for identification and fast prediction of behaviors
por: Alexander I. Hsu, et al.
Publicado: (2021) -
Estimating the phase volume fraction of multi-phase steel via unsupervised deep learning
por: Sung Wook Kim, et al.
Publicado: (2021) -
Synthetic Source Universal Domain Adaptation through Contrastive Learning
por: Jungchan Cho
Publicado: (2021)