Unsupervised multi-source domain adaptation with no observable source data.
Given trained models from multiple source domains, how can we predict the labels of unlabeled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims for predicting the labels of unlabeled target data by transferring the knowledge of multiple source domains. UMDA is a crucia...
Enregistré dans:
Auteurs principaux: | , , |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/23a4fccc91304804b1a1b90f9f7b92e7 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Soyez le premier à ajouter un commentaire!