Unsupervised multi-source domain adaptation with no observable source data.

Given trained models from multiple source domains, how can we predict the labels of unlabeled data in a target domain? Unsupervised multi-source domain adaptation (UMDA) aims for predicting the labels of unlabeled target data by transferring the knowledge of multiple source domains. UMDA is a crucia...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Hyunsik Jeon, Seongmin Lee, U Kang
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2021
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/23a4fccc91304804b1a1b90f9f7b92e7
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!