Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
Machine learning models can accurately predict atomistic chemical properties but do not provide access to the molecular electronic structure. Here the authors use a deep learning approach to predict the quantum mechanical wavefunction at high efficiency from which other ground-state properties can b...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23a7395375c64d40967fed2e3eac6dc0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:23a7395375c64d40967fed2e3eac6dc0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:23a7395375c64d40967fed2e3eac6dc02021-12-02T16:57:20ZUnifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions10.1038/s41467-019-12875-22041-1723https://doaj.org/article/23a7395375c64d40967fed2e3eac6dc02019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12875-2https://doaj.org/toc/2041-1723Machine learning models can accurately predict atomistic chemical properties but do not provide access to the molecular electronic structure. Here the authors use a deep learning approach to predict the quantum mechanical wavefunction at high efficiency from which other ground-state properties can be derived.K. T. SchüttM. GasteggerA. TkatchenkoK.-R. MüllerR. J. MaurerNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q K. T. Schütt M. Gastegger A. Tkatchenko K.-R. Müller R. J. Maurer Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions |
description |
Machine learning models can accurately predict atomistic chemical properties but do not provide access to the molecular electronic structure. Here the authors use a deep learning approach to predict the quantum mechanical wavefunction at high efficiency from which other ground-state properties can be derived. |
format |
article |
author |
K. T. Schütt M. Gastegger A. Tkatchenko K.-R. Müller R. J. Maurer |
author_facet |
K. T. Schütt M. Gastegger A. Tkatchenko K.-R. Müller R. J. Maurer |
author_sort |
K. T. Schütt |
title |
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions |
title_short |
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions |
title_full |
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions |
title_fullStr |
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions |
title_full_unstemmed |
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions |
title_sort |
unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/23a7395375c64d40967fed2e3eac6dc0 |
work_keys_str_mv |
AT ktschutt unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions AT mgastegger unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions AT atkatchenko unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions AT krmuller unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions AT rjmaurer unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions |
_version_ |
1718382551389700096 |