Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions

Machine learning models can accurately predict atomistic chemical properties but do not provide access to the molecular electronic structure. Here the authors use a deep learning approach to predict the quantum mechanical wavefunction at high efficiency from which other ground-state properties can b...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: K. T. Schütt, M. Gastegger, A. Tkatchenko, K.-R. Müller, R. J. Maurer
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/23a7395375c64d40967fed2e3eac6dc0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:23a7395375c64d40967fed2e3eac6dc0
record_format dspace
spelling oai:doaj.org-article:23a7395375c64d40967fed2e3eac6dc02021-12-02T16:57:20ZUnifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions10.1038/s41467-019-12875-22041-1723https://doaj.org/article/23a7395375c64d40967fed2e3eac6dc02019-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-12875-2https://doaj.org/toc/2041-1723Machine learning models can accurately predict atomistic chemical properties but do not provide access to the molecular electronic structure. Here the authors use a deep learning approach to predict the quantum mechanical wavefunction at high efficiency from which other ground-state properties can be derived.K. T. SchüttM. GasteggerA. TkatchenkoK.-R. MüllerR. J. MaurerNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
K. T. Schütt
M. Gastegger
A. Tkatchenko
K.-R. Müller
R. J. Maurer
Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
description Machine learning models can accurately predict atomistic chemical properties but do not provide access to the molecular electronic structure. Here the authors use a deep learning approach to predict the quantum mechanical wavefunction at high efficiency from which other ground-state properties can be derived.
format article
author K. T. Schütt
M. Gastegger
A. Tkatchenko
K.-R. Müller
R. J. Maurer
author_facet K. T. Schütt
M. Gastegger
A. Tkatchenko
K.-R. Müller
R. J. Maurer
author_sort K. T. Schütt
title Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
title_short Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
title_full Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
title_fullStr Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
title_full_unstemmed Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
title_sort unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/23a7395375c64d40967fed2e3eac6dc0
work_keys_str_mv AT ktschutt unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions
AT mgastegger unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions
AT atkatchenko unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions
AT krmuller unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions
AT rjmaurer unifyingmachinelearningandquantumchemistrywithadeepneuralnetworkformolecularwavefunctions
_version_ 1718382551389700096