Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system
Halal has been a long-disputed issue due to the reason of its complexity consequently of swift advancement in innovation and technology. Gelatin plays a vital role in modern food processing as it has been used in many food preparations and is commonly used to make the pharmaceuticals capsule these d...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23a9230d6aa74f7db625d7a5dc844382 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:23a9230d6aa74f7db625d7a5dc844382 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:23a9230d6aa74f7db625d7a5dc8443822021-11-04T15:51:55ZDistinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system2331-191610.1080/23311916.2019.1599149https://doaj.org/article/23a9230d6aa74f7db625d7a5dc8443822019-01-01T00:00:00Zhttp://dx.doi.org/10.1080/23311916.2019.1599149https://doaj.org/toc/2331-1916Halal has been a long-disputed issue due to the reason of its complexity consequently of swift advancement in innovation and technology. Gelatin plays a vital role in modern food processing as it has been used in many food preparations and is commonly used to make the pharmaceuticals capsule these days. In this work, various types of animal fat will measure dielectrically to distinguish them for the development of the detection system. This project applied the measurement of reflection coefficient by using the high-temperature probes. These probes use the principle of microwave method and allow the measurement to be made in a fast and non-destructive way. For this project, the high-temperature probe is used to measure the sample of animal fat for instance chicken, beef and pork fat. The fresh animal fat was used and the moisture content of the animal fat was manipulated by using the oven-drying technique. The different levels of moisture content inside the fat will affect the measurement value of reflection coefficient as the moisture content will change the dielectric properties of the animal fat. The measurement of reflection coefficient was made with a network analyzer in the frequency range of 0.2 GHz to 20 GHz. From the experimental result, it can be concluded that pork fat shows distinguishable trend compared with chicken and beef fat which perform similar trend in variation of reflection coefficient (|S11|), dielectric constant (έ) and dielectric loss (ἔ) throughout the frequency range from 0.2 GHz to 20 GHz.Kit Yeng SinMun Chong SinTaylor & Francis Grouparticlehalaldielectricallyreflection coefficienthigh temperature probeEngineering (General). Civil engineering (General)TA1-2040ENCogent Engineering, Vol 6, Iss 1 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
halal dielectrically reflection coefficient high temperature probe Engineering (General). Civil engineering (General) TA1-2040 |
spellingShingle |
halal dielectrically reflection coefficient high temperature probe Engineering (General). Civil engineering (General) TA1-2040 Kit Yeng Sin Mun Chong Sin Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system |
description |
Halal has been a long-disputed issue due to the reason of its complexity consequently of swift advancement in innovation and technology. Gelatin plays a vital role in modern food processing as it has been used in many food preparations and is commonly used to make the pharmaceuticals capsule these days. In this work, various types of animal fat will measure dielectrically to distinguish them for the development of the detection system. This project applied the measurement of reflection coefficient by using the high-temperature probes. These probes use the principle of microwave method and allow the measurement to be made in a fast and non-destructive way. For this project, the high-temperature probe is used to measure the sample of animal fat for instance chicken, beef and pork fat. The fresh animal fat was used and the moisture content of the animal fat was manipulated by using the oven-drying technique. The different levels of moisture content inside the fat will affect the measurement value of reflection coefficient as the moisture content will change the dielectric properties of the animal fat. The measurement of reflection coefficient was made with a network analyzer in the frequency range of 0.2 GHz to 20 GHz. From the experimental result, it can be concluded that pork fat shows distinguishable trend compared with chicken and beef fat which perform similar trend in variation of reflection coefficient (|S11|), dielectric constant (έ) and dielectric loss (ἔ) throughout the frequency range from 0.2 GHz to 20 GHz. |
format |
article |
author |
Kit Yeng Sin Mun Chong Sin |
author_facet |
Kit Yeng Sin Mun Chong Sin |
author_sort |
Kit Yeng Sin |
title |
Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system |
title_short |
Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system |
title_full |
Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system |
title_fullStr |
Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system |
title_full_unstemmed |
Distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system |
title_sort |
distinguished identification of halal and non-halal animal-fat gelatin by using microwave dielectric sensing system |
publisher |
Taylor & Francis Group |
publishDate |
2019 |
url |
https://doaj.org/article/23a9230d6aa74f7db625d7a5dc844382 |
work_keys_str_mv |
AT kityengsin distinguishedidentificationofhalalandnonhalalanimalfatgelatinbyusingmicrowavedielectricsensingsystem AT munchongsin distinguishedidentificationofhalalandnonhalalanimalfatgelatinbyusingmicrowavedielectricsensingsystem |
_version_ |
1718444702127095808 |