White matter alterations in glaucoma and monocular blindness differ outside the visual system
Abstract The degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. Wh...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23bee6d2b7ef444e8702f459a51b871f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:23bee6d2b7ef444e8702f459a51b871f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:23bee6d2b7ef444e8702f459a51b871f2021-12-02T11:45:01ZWhite matter alterations in glaucoma and monocular blindness differ outside the visual system10.1038/s41598-021-85602-x2045-2322https://doaj.org/article/23bee6d2b7ef444e8702f459a51b871f2021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-85602-xhttps://doaj.org/toc/2045-2322Abstract The degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. White matter tracts were subdivided into seven categories ranging from those primarily involved in vision (the visual white matter) to those primarily involved in cognition and motor control. In the vision tracts, WMM was decreased as measured by fractional anisotropy in both glaucoma and monocular blind subjects compared to controls, suggesting neurodegeneration due to reduced sensory inputs. A test–retest approach was used to validate these results. The pattern of results was different in monocular blind subjects, where WMM properties increased outside the visual white matter as compared to controls. This pattern of results suggests that whereas in the monocular blind loss of visual input might promote white matter reorganization outside of the early visual system, such reorganization might be reduced or absent in glaucoma. The results provide indirect evidence that in glaucoma unknown factors might limit the reorganization as seen in other patient groups following visual loss.Sandra HanekampBranislava Ćurčić-BlakeBradley CaronBrent McPhersonAnneleen TimmerDoety PrinsChristine C. BoucardMasaki YoshidaMasahiro IdaDavid HuntNomdo M. JansoniusFranco PestilliFrans W. CornelissenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-16 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sandra Hanekamp Branislava Ćurčić-Blake Bradley Caron Brent McPherson Anneleen Timmer Doety Prins Christine C. Boucard Masaki Yoshida Masahiro Ida David Hunt Nomdo M. Jansonius Franco Pestilli Frans W. Cornelissen White matter alterations in glaucoma and monocular blindness differ outside the visual system |
description |
Abstract The degree to which glaucoma has effects in the brain beyond the eye and the visual pathways is unclear. To clarify this, we investigated white matter microstructure (WMM) in 37 tracts of patients with glaucoma, monocular blindness, and controls. We used brainlife.io for reproducibility. White matter tracts were subdivided into seven categories ranging from those primarily involved in vision (the visual white matter) to those primarily involved in cognition and motor control. In the vision tracts, WMM was decreased as measured by fractional anisotropy in both glaucoma and monocular blind subjects compared to controls, suggesting neurodegeneration due to reduced sensory inputs. A test–retest approach was used to validate these results. The pattern of results was different in monocular blind subjects, where WMM properties increased outside the visual white matter as compared to controls. This pattern of results suggests that whereas in the monocular blind loss of visual input might promote white matter reorganization outside of the early visual system, such reorganization might be reduced or absent in glaucoma. The results provide indirect evidence that in glaucoma unknown factors might limit the reorganization as seen in other patient groups following visual loss. |
format |
article |
author |
Sandra Hanekamp Branislava Ćurčić-Blake Bradley Caron Brent McPherson Anneleen Timmer Doety Prins Christine C. Boucard Masaki Yoshida Masahiro Ida David Hunt Nomdo M. Jansonius Franco Pestilli Frans W. Cornelissen |
author_facet |
Sandra Hanekamp Branislava Ćurčić-Blake Bradley Caron Brent McPherson Anneleen Timmer Doety Prins Christine C. Boucard Masaki Yoshida Masahiro Ida David Hunt Nomdo M. Jansonius Franco Pestilli Frans W. Cornelissen |
author_sort |
Sandra Hanekamp |
title |
White matter alterations in glaucoma and monocular blindness differ outside the visual system |
title_short |
White matter alterations in glaucoma and monocular blindness differ outside the visual system |
title_full |
White matter alterations in glaucoma and monocular blindness differ outside the visual system |
title_fullStr |
White matter alterations in glaucoma and monocular blindness differ outside the visual system |
title_full_unstemmed |
White matter alterations in glaucoma and monocular blindness differ outside the visual system |
title_sort |
white matter alterations in glaucoma and monocular blindness differ outside the visual system |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/23bee6d2b7ef444e8702f459a51b871f |
work_keys_str_mv |
AT sandrahanekamp whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT branislavacurcicblake whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT bradleycaron whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT brentmcpherson whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT anneleentimmer whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT doetyprins whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT christinecboucard whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT masakiyoshida whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT masahiroida whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT davidhunt whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT nomdomjansonius whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT francopestilli whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem AT franswcornelissen whitematteralterationsinglaucomaandmonocularblindnessdifferoutsidethevisualsystem |
_version_ |
1718395270223364096 |