RUBIC identifies driver genes by detecting recurrent DNA copy number breaks
Analysis of cancer genome sequencing data has been used to predict genes associated with the pathogenesis of cancer. Here, the authors propose a new algorithm entitled RUBIC that predicts breaks in DNA as opposed to previously published methods that predict amplifications and deletions of DNA.
Guardado en:
Autores principales: | Ewald van Dyk, Marlous Hoogstraat, Jelle ten Hoeve, Marcel J. T. Reinders, Lodewyk F. A. Wessels |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23bfe5c1359c422db01ba4741610b336 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Germline DNA copy number aberrations identified as potential prognostic factors for breast cancer recurrence.
por: Yadav Sapkota, et al.
Publicado: (2013) -
Integrated analysis of gene expression and copy number identified potential cancer driver genes with amplification-dependent overexpression in 1,454 solid tumors
por: Keiichi Ohshima, et al.
Publicado: (2017) -
Oncodrive-CIS: a method to reveal likely driver genes based on the impact of their copy number changes on expression.
por: David Tamborero, et al.
Publicado: (2013) -
Copy number variation in Thai population.
por: Bhoom Suktitipat, et al.
Publicado: (2014) -
Identification of rare recurrent copy number variants in high-risk autism families and their prevalence in a large ASD population.
por: Nori Matsunami, et al.
Publicado: (2013)