Numerical Investigations through ANNs for Solving COVID-19 Model
The current investigations of the COVID-19 spreading model are presented through the artificial neuron networks (ANNs) with training of the Levenberg-Marquardt backpropagation (LMB), i.e., ANNs-LMB. The ANNs-LMB scheme is used in different variations of the sample data for training, validation, and...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23c1381115464cf180fb87e547c8c2c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The current investigations of the COVID-19 spreading model are presented through the artificial neuron networks (ANNs) with training of the Levenberg-Marquardt backpropagation (LMB), i.e., ANNs-LMB. The ANNs-LMB scheme is used in different variations of the sample data for training, validation, and testing with 80%, 10%, and 10%, respectively. The approximate numerical solutions of the COVID-19 spreading model have been calculated using the ANNs-LMB and compared viably using the reference dataset based on the Runge-Kutta scheme. The obtained performance of the solution dynamics of the COVID-19 spreading model are presented based on the ANNs-LMB to minimize the values of fitness on mean square error (M.S.E), along with error histograms, regression, and correlation analysis. |
---|