Model selection for inferential models with high dimensional data: synthesis and graphical representation of multiple techniques
Abstract Inferential research commonly involves identification of causal factors from within high dimensional data but selection of the ‘correct’ variables can be problematic. One specific problem is that results vary depending on statistical method employed and it has been argued that triangulation...
Guardado en:
Autores principales: | Eliana Lima, Robert Hyde, Martin Green |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23cf382d4b0a43df854972ac27e9f3d6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Extended graphical lasso for multiple interaction networks for high dimensional omics data.
por: Yang Xu, et al.
Publicado: (2021) -
The Degrees of Understanding and the Inferential Component of Understanding
por: Stefan Petkov
Publicado: (2021) -
GRAPHIC AND REPRESENTABLE FUZZIFYING MATROIDS
por: Huang,Chun-E
Publicado: (2010) -
MIPSYN-Global: Process Synthesis Enabled by Graphical Modelling
por: Miloš Bogataj, et al.
Publicado: (2021) -
Journal of molecular graphics & modelling
Publicado: (1997)