Model selection for inferential models with high dimensional data: synthesis and graphical representation of multiple techniques
Abstract Inferential research commonly involves identification of causal factors from within high dimensional data but selection of the ‘correct’ variables can be problematic. One specific problem is that results vary depending on statistical method employed and it has been argued that triangulation...
Enregistré dans:
Auteurs principaux: | Eliana Lima, Robert Hyde, Martin Green |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/23cf382d4b0a43df854972ac27e9f3d6 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Extended graphical lasso for multiple interaction networks for high dimensional omics data.
par: Yang Xu, et autres
Publié: (2021) -
The Degrees of Understanding and the Inferential Component of Understanding
par: Stefan Petkov
Publié: (2021) -
GRAPHIC AND REPRESENTABLE FUZZIFYING MATROIDS
par: Huang,Chun-E
Publié: (2010) -
MIPSYN-Global: Process Synthesis Enabled by Graphical Modelling
par: Miloš Bogataj, et autres
Publié: (2021) -
Journal of molecular graphics & modelling
Publié: (1997)