A novel algorithm to detect non-wear time from raw accelerometer data using deep convolutional neural networks
Abstract To date, non-wear detection algorithms commonly employ a 30, 60, or even 90 mins interval or window in which acceleration values need to be below a threshold value. A major drawback of such intervals is that they need to be long enough to prevent false positives (type I errors), while short...
Guardado en:
Autores principales: | Shaheen Syed, Bente Morseth, Laila A. Hopstock, Alexander Horsch |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23d4d98bfba6484ebb75713885ef5f1e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quality control methods in accelerometer data processing: defining minimum wear time.
por: Carly Rich, et al.
Publicado: (2013) -
Deep convolutional neural networks for accurate somatic mutation detection
por: Sayed Mohammad Ebrahim Sahraeian, et al.
Publicado: (2019) -
Coastal Waste Detection Based on Deep Convolutional Neural Networks
por: Chengjuan Ren, et al.
Publicado: (2021) -
Evaluation of accelerometer-based fall detection algorithms on real-world falls.
por: Fabio Bagalà, et al.
Publicado: (2012) -
Convolutional Neural Network and OpenCV Based Mobile Application to Detect Wear out in Car Tyres
Publicado: (2021)