Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing

The vibrations of bearings holding the high-speed shaft of a steam turbine are critically controlled for the safe and reliable power generation at the power plants. In this paper, two artificial intelligence (AI) process models, i.e., artificial neural network (ANN) and support vector machine (SVM)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Waqar Muhammad Ashraf, Yasir Rafique, Ghulam Moeen Uddin, Fahid Riaz, Muhammad Asim, Muhammad Farooq, Abid Hussain, Chaudhary Awais Salman
Formato: article
Lenguaje:EN
Publicado: Elsevier 2022
Materias:
ANN
SVM
Acceso en línea:https://doaj.org/article/23df474415e64a87b22ec471080a83e2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:23df474415e64a87b22ec471080a83e2
record_format dspace
spelling oai:doaj.org-article:23df474415e64a87b22ec471080a83e22021-12-02T04:59:43ZArtificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing1110-016810.1016/j.aej.2021.07.039https://doaj.org/article/23df474415e64a87b22ec471080a83e22022-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1110016821005093https://doaj.org/toc/1110-0168The vibrations of bearings holding the high-speed shaft of a steam turbine are critically controlled for the safe and reliable power generation at the power plants. In this paper, two artificial intelligence (AI) process models, i.e., artificial neural network (ANN) and support vector machine (SVM) based relative vibration modeling of a steam turbine shaft bearing of a 660 MW supercritical steam turbine system is presented. After extensive data processing and machine learning based visualization tests performed on the raw operational data, ANN and SVM models are trained, validated and compared by external validation tests. ANN has outperformed SVM in terms of better prediction capability and is, therefore, deployed for simulating the constructed operating scenarios. ANN process model is tested for the complete load range of power plant, i.e., from 353 MW to 662 MW and 4.07% reduction in the relative vibration of the bearing is predicted by the network. Further, various vibration reduction operating strategies are developed and tested on the validated and robust ANN process model. A selected operating strategy which has predicted a promising reduction in the relative vibration of bearing is selected. In order to confirm the effectiveness of the prediction of the ANN process model, the selected operating strategy is implemented on the actual operation of the power plant. The resulting reduction in the relative vibrations of the turbine’s bearing, which is less than the alarm limit, are confirmed. This cements the role of ANN process model to be used as an operational excellence tool resulting in vibration reduction of high-speed rotating equipment.Waqar Muhammad AshrafYasir RafiqueGhulam Moeen UddinFahid RiazMuhammad AsimMuhammad FarooqAbid HussainChaudhary Awais SalmanElsevierarticleANNSVMModeling & optimizationVibration reductionSteam turbineEngineering (General). Civil engineering (General)TA1-2040ENAlexandria Engineering Journal, Vol 61, Iss 3, Pp 1864-1880 (2022)
institution DOAJ
collection DOAJ
language EN
topic ANN
SVM
Modeling & optimization
Vibration reduction
Steam turbine
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle ANN
SVM
Modeling & optimization
Vibration reduction
Steam turbine
Engineering (General). Civil engineering (General)
TA1-2040
Waqar Muhammad Ashraf
Yasir Rafique
Ghulam Moeen Uddin
Fahid Riaz
Muhammad Asim
Muhammad Farooq
Abid Hussain
Chaudhary Awais Salman
Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
description The vibrations of bearings holding the high-speed shaft of a steam turbine are critically controlled for the safe and reliable power generation at the power plants. In this paper, two artificial intelligence (AI) process models, i.e., artificial neural network (ANN) and support vector machine (SVM) based relative vibration modeling of a steam turbine shaft bearing of a 660 MW supercritical steam turbine system is presented. After extensive data processing and machine learning based visualization tests performed on the raw operational data, ANN and SVM models are trained, validated and compared by external validation tests. ANN has outperformed SVM in terms of better prediction capability and is, therefore, deployed for simulating the constructed operating scenarios. ANN process model is tested for the complete load range of power plant, i.e., from 353 MW to 662 MW and 4.07% reduction in the relative vibration of the bearing is predicted by the network. Further, various vibration reduction operating strategies are developed and tested on the validated and robust ANN process model. A selected operating strategy which has predicted a promising reduction in the relative vibration of bearing is selected. In order to confirm the effectiveness of the prediction of the ANN process model, the selected operating strategy is implemented on the actual operation of the power plant. The resulting reduction in the relative vibrations of the turbine’s bearing, which is less than the alarm limit, are confirmed. This cements the role of ANN process model to be used as an operational excellence tool resulting in vibration reduction of high-speed rotating equipment.
format article
author Waqar Muhammad Ashraf
Yasir Rafique
Ghulam Moeen Uddin
Fahid Riaz
Muhammad Asim
Muhammad Farooq
Abid Hussain
Chaudhary Awais Salman
author_facet Waqar Muhammad Ashraf
Yasir Rafique
Ghulam Moeen Uddin
Fahid Riaz
Muhammad Asim
Muhammad Farooq
Abid Hussain
Chaudhary Awais Salman
author_sort Waqar Muhammad Ashraf
title Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
title_short Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
title_full Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
title_fullStr Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
title_full_unstemmed Artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
title_sort artificial intelligence based operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing
publisher Elsevier
publishDate 2022
url https://doaj.org/article/23df474415e64a87b22ec471080a83e2
work_keys_str_mv AT waqarmuhammadashraf artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
AT yasirrafique artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
AT ghulammoeenuddin artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
AT fahidriaz artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
AT muhammadasim artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
AT muhammadfarooq artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
AT abidhussain artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
AT chaudharyawaissalman artificialintelligencebasedoperationalstrategydevelopmentandimplementationforvibrationreductionofasupercriticalsteamturbineshaftbearing
_version_ 1718400878053949440