Symbolic regression based hybrid semiparametric modelling of processes: An example case of a bending process
Hybrid semiparametric models integrate physics-based (“white-box”, parametric) and data-driven (“black-box”, non-parametric) submodels. Black-box models are often implemented using artificial neural networks (ANNs). In this work, we investigate the fitness of symbolic regression (SR) for black-box m...
Guardado en:
Autores principales: | Mohammad Zhian Asadzadeh, Hans-Peter Gänser, Manfred Mücke |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23e3f6d474f24dd5b62bafff29428b69 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid modeling of induction hardening processes
por: Mohammad Zhian Asadzadeh, et al.
Publicado: (2021) -
Application of symbolic regression for constitutive modeling of plastic deformation
por: Evgeniya Kabliman, et al.
Publicado: (2021) -
Application of dynamic adaptive technology based on symbolic regression to identify modal parameters of chip sorter
por: Xuchu Jiang, et al.
Publicado: (2021) -
ANALYSIS OF ELECTROMAGNETIC PROCESSES IN THE SYSTEM «CYLINDRICAL SOLENOID – MASSIVE CONDUCTOR»
por: Yu. V. Batygin, et al.
Publicado: (2018) -
Effects of folding numbers, scoring depth and bending velocity on bending-moment relaxation of creased paperboard
por: Shigeru NAGASAWA, et al.
Publicado: (2014)