The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA.
<h4>Background</h4>MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23e7c5a57b244ae4b24a4b6fb68b9666 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:23e7c5a57b244ae4b24a4b6fb68b9666 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:23e7c5a57b244ae4b24a4b6fb68b96662021-11-18T06:36:22ZThe human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA.1932-620310.1371/journal.pone.0011982https://doaj.org/article/23e7c5a57b244ae4b24a4b6fb68b96662010-08-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20700456/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation.<h4>Principal findings</h4>Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested.<h4>Conclusions</h4>Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization.Sophie LagetMichael JoulieFlorent Le MassonNobuhiro SasaiElisabeth ChristiansSriharsa PradhanRichard J RobertsPierre-Antoine DefossezPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 8, p e11982 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sophie Laget Michael Joulie Florent Le Masson Nobuhiro Sasai Elisabeth Christians Sriharsa Pradhan Richard J Roberts Pierre-Antoine Defossez The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. |
description |
<h4>Background</h4>MBD5 and MBD6 are two uncharacterized mammalian proteins that contain a putative Methyl-Binding Domain (MBD). In the proteins MBD1, MBD2, MBD4, and MeCP2, this domain allows the specific recognition of DNA containing methylated cytosine; as a consequence, the proteins serve as interpreters of DNA methylation, an essential epigenetic mark. It is unknown whether MBD5 or MBD6 also bind methylated DNA; this question has interest for basic research, but also practical consequences for human health, as MBD5 deletions are the likely cause of certain cases of mental retardation.<h4>Principal findings</h4>Here we report the first functional characterization of MBD5 and MBD6. We have observed that the proteins colocalize with heterochromatin in cultured cells, and that this localization requires the integrity of their MBD. However, heterochromatic localization is maintained in cells with severely decreased levels of DNA methylation. In vitro, neither MBD5 nor MBD6 binds any of the methylated sequences DNA that were tested.<h4>Conclusions</h4>Our data suggest that MBD5 and MBD6 are unlikely to be methyl-binding proteins, yet they may contribute to the formation or function of heterochromatin. One isoform of MBD5 is highly expressed in oocytes, which suggests a possible role in epigenetic reprogramming after fertilization. |
format |
article |
author |
Sophie Laget Michael Joulie Florent Le Masson Nobuhiro Sasai Elisabeth Christians Sriharsa Pradhan Richard J Roberts Pierre-Antoine Defossez |
author_facet |
Sophie Laget Michael Joulie Florent Le Masson Nobuhiro Sasai Elisabeth Christians Sriharsa Pradhan Richard J Roberts Pierre-Antoine Defossez |
author_sort |
Sophie Laget |
title |
The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. |
title_short |
The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. |
title_full |
The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. |
title_fullStr |
The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. |
title_full_unstemmed |
The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA. |
title_sort |
human proteins mbd5 and mbd6 associate with heterochromatin but they do not bind methylated dna. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/23e7c5a57b244ae4b24a4b6fb68b9666 |
work_keys_str_mv |
AT sophielaget thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT michaeljoulie thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT florentlemasson thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT nobuhirosasai thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT elisabethchristians thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT sriharsapradhan thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT richardjroberts thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT pierreantoinedefossez thehumanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT sophielaget humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT michaeljoulie humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT florentlemasson humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT nobuhirosasai humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT elisabethchristians humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT sriharsapradhan humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT richardjroberts humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna AT pierreantoinedefossez humanproteinsmbd5andmbd6associatewithheterochromatinbuttheydonotbindmethylateddna |
_version_ |
1718424403293765632 |