A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction
Pedestrian trajectory prediction is one of the main concerns of computer vision problems in the automotive industry, especially in the field of advanced driver assistance systems. The ability to anticipate the next movements of pedestrians on the street is a key task in many areas, e.g., self-drivin...
Guardado en:
Autores principales: | Bogdan Ilie Sighencea, Rareș Ion Stanciu, Cătălin Daniel Căleanu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23f0e81008644e838af699bf1b5c8647 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review
por: Luiz G. Galvao, et al.
Publicado: (2021) -
A New Trajectory Tracking Algorithm for Autonomous Vehicles Based on Model Predictive Control
por: Zhejun Huang, et al.
Publicado: (2021) -
Clustering as an EDA method: the case of pedestrian directional flow behavior.
por: Kardi Teknomo, et al.
Publicado: (2010) -
A Deep Learning Approach for Foot Trajectory Estimation in Gait Analysis Using Inertial Sensors
por: Vânia Guimarães, et al.
Publicado: (2021) -
On the Quality of Street Lighting in Pedestrian Crossings
por: Malgorzata Zalesinska, et al.
Publicado: (2021)