A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction
Pedestrian trajectory prediction is one of the main concerns of computer vision problems in the automotive industry, especially in the field of advanced driver assistance systems. The ability to anticipate the next movements of pedestrians on the street is a key task in many areas, e.g., self-drivin...
Enregistré dans:
Auteurs principaux: | Bogdan Ilie Sighencea, Rareș Ion Stanciu, Cătălin Daniel Căleanu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/23f0e81008644e838af699bf1b5c8647 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Pedestrian and Vehicle Detection in Autonomous Vehicle Perception Systems—A Review
par: Luiz G. Galvao, et autres
Publié: (2021) -
A New Trajectory Tracking Algorithm for Autonomous Vehicles Based on Model Predictive Control
par: Zhejun Huang, et autres
Publié: (2021) -
Clustering as an EDA method: the case of pedestrian directional flow behavior.
par: Kardi Teknomo, et autres
Publié: (2010) -
A Deep Learning Approach for Foot Trajectory Estimation in Gait Analysis Using Inertial Sensors
par: Vânia Guimarães, et autres
Publié: (2021) -
On the Quality of Street Lighting in Pedestrian Crossings
par: Malgorzata Zalesinska, et autres
Publié: (2021)