Weighted Reconstruction and Improved Eigenclass Combination Method for the Detection of Bearing Faults
Aiming at the difficulty of extracting and classifying early bearing faults, a fault diagnosis method based on weighted average time-varying filtering empirical mode decomposition and improved eigenclass is proposed in this paper. Firstly, the bearing fault signal is decomposed into a series of intr...
Guardado en:
Autores principales: | Zhengyu Du, Jie Ma, Chao Ma, Min Huang, Weiwei Sun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/23fa626fe2d5494581a170587b119874 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Compound Fault Diagnosis of Rolling Bearing Based on ALIF-KELM
por: Jie Ma, et al.
Publicado: (2021) -
Early Fault Diagnosis Technology for Bearings Based on Quantile Multiscale Permutation Entropy
por: Yufeng Long, et al.
Publicado: (2021) -
Load Frequency Control for Power Systems with Actuator Faults within a Finite-Time Interval
por: Haifeng Qiu, et al.
Publicado: (2021) -
Malicious Mining Behavior Detection System of Encrypted Digital Currency Based on Machine Learning
por: Mu Bie, et al.
Publicado: (2021) -
A Multisource Situation Information Fusion Method Based on Dynamic Evidence Combination
por: Jing Liu, et al.
Publicado: (2021)