Learning mutational signatures and their multidimensional genomic properties with TensorSignatures

Currently available tools for the analysis of mutational signatures do not make use of all possible genomic properties aside from mutation patterns. Here the authors present TensorSignatures, an efficient framework that jointly infers mutational signatures and their genomic determinants.

Guardado en:
Detalles Bibliográficos
Autores principales: Harald Vöhringer, Arne Van Hoeck, Edwin Cuppen, Moritz Gerstung
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/2405297639f64e50aa0d98e47f6b0bb5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:2405297639f64e50aa0d98e47f6b0bb5
record_format dspace
spelling oai:doaj.org-article:2405297639f64e50aa0d98e47f6b0bb52021-12-02T17:40:23ZLearning mutational signatures and their multidimensional genomic properties with TensorSignatures10.1038/s41467-021-23551-92041-1723https://doaj.org/article/2405297639f64e50aa0d98e47f6b0bb52021-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23551-9https://doaj.org/toc/2041-1723Currently available tools for the analysis of mutational signatures do not make use of all possible genomic properties aside from mutation patterns. Here the authors present TensorSignatures, an efficient framework that jointly infers mutational signatures and their genomic determinants.Harald VöhringerArne Van HoeckEdwin CuppenMoritz GerstungNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-16 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Harald Vöhringer
Arne Van Hoeck
Edwin Cuppen
Moritz Gerstung
Learning mutational signatures and their multidimensional genomic properties with TensorSignatures
description Currently available tools for the analysis of mutational signatures do not make use of all possible genomic properties aside from mutation patterns. Here the authors present TensorSignatures, an efficient framework that jointly infers mutational signatures and their genomic determinants.
format article
author Harald Vöhringer
Arne Van Hoeck
Edwin Cuppen
Moritz Gerstung
author_facet Harald Vöhringer
Arne Van Hoeck
Edwin Cuppen
Moritz Gerstung
author_sort Harald Vöhringer
title Learning mutational signatures and their multidimensional genomic properties with TensorSignatures
title_short Learning mutational signatures and their multidimensional genomic properties with TensorSignatures
title_full Learning mutational signatures and their multidimensional genomic properties with TensorSignatures
title_fullStr Learning mutational signatures and their multidimensional genomic properties with TensorSignatures
title_full_unstemmed Learning mutational signatures and their multidimensional genomic properties with TensorSignatures
title_sort learning mutational signatures and their multidimensional genomic properties with tensorsignatures
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/2405297639f64e50aa0d98e47f6b0bb5
work_keys_str_mv AT haraldvohringer learningmutationalsignaturesandtheirmultidimensionalgenomicpropertieswithtensorsignatures
AT arnevanhoeck learningmutationalsignaturesandtheirmultidimensionalgenomicpropertieswithtensorsignatures
AT edwincuppen learningmutationalsignaturesandtheirmultidimensionalgenomicpropertieswithtensorsignatures
AT moritzgerstung learningmutationalsignaturesandtheirmultidimensionalgenomicpropertieswithtensorsignatures
_version_ 1718379750819364864