Quantitative analysis of metal artifact reduction in total hip arthroplasty using virtual monochromatic imaging and orthopedic metal artifact reduction, a phantom study
Abstract Objective To quantify metal artifact reduction using 130 keV virtual monochromatic imaging (VMI) with and without orthopedic metal artifact reduction (O-MAR) in total hip arthroplasty. Methods Conventional polychromatic images and 130 keV VMI of a phantom with pellets representing bone with...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/2415b6e3534e4a7ba272e78b3795829a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Objective To quantify metal artifact reduction using 130 keV virtual monochromatic imaging (VMI) with and without orthopedic metal artifact reduction (O-MAR) in total hip arthroplasty. Methods Conventional polychromatic images and 130 keV VMI of a phantom with pellets representing bone with unilateral or bilateral prostheses were reconstructed with and without O-MAR on a dual-layer CT. Pellets were categorized as unaffected, mildly affected and severely affected. Results When 130 keV VMI with O-MAR was compared to conventional imaging with O-MAR, a relative metal artifact reduction in CT values, contrast-to-noise (CNR), signal-to-noise (SNR) and noise in mildly affected pellets (67%, 74%, 48%, 68%, respectively; p < 0.05) was observed but no significant relative metal artifact reduction in severely affected pellets. Comparison between 130 keV VMI without O-MAR and conventional imaging with O-MAR showed relative metal artifact reduction in CT values, CNR, SNR and noise in mildly affected pellets (92%, 72%, 38%, 51%, respectively; p < 0.05) but negative relative metal artifact reduction in CT values and noise in severely affected pellets (− 331% and -223%, respectively; p < 0.05), indicating aggravation of metal artifacts. Conclusion Overall, VMI of 130 keV with O-MAR provided the strongest metal artifact reduction. |
---|