A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction
Abstract Data collected from clinical trials and cohort studies, such as dementia studies, are often high-dimensional, censored, heterogeneous and contain missing information, presenting challenges to traditional statistical analysis. There is an urgent need for methods that can overcome these chall...
Guardado en:
Autores principales: | Annette Spooner, Emily Chen, Arcot Sowmya, Perminder Sachdev, Nicole A. Kochan, Julian Trollor, Henry Brodaty |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/241adb643d7845fea517bcfa07bbbc26 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Alternation in Effective Connectivity With Cognitive Aging: A Longitudinal Study of Elderly Populations
por: Xingxing Cao, et al.
Publicado: (2021) -
Grey matter correlates of three language tests in non-demented older adults.
por: Haobo Zhang, et al.
Publicado: (2013) -
The association between pulse wave velocity and cognitive function: the Sydney Memory and Ageing Study.
por: Joel Singer, et al.
Publicado: (2013) -
Lifespan mental activity predicts diminished rate of hippocampal atrophy.
por: Michael J Valenzuela, et al.
Publicado: (2008) -
Estimation of three-dimensional chromatin morphology for nuclear classification and characterisation
por: Priyanka Rana, et al.
Publicado: (2021)