Methods Development for the Constrained Elastic Modulus Investigation of Organic Material in Natural Soil Conditions

Compressibility is one of the most important mechanical properties of soil. The parameter that characterizes compressibility is the constrained modulus of elasticity. Knowledge of this is important to calculate the settlement of a structure foundation on peat material. According to soil classificati...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zygmunt Meyer, Magdalena Olszewska
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/241ff76889f644828e3fc17aaacede35
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Compressibility is one of the most important mechanical properties of soil. The parameter that characterizes compressibility is the constrained modulus of elasticity. Knowledge of this is important to calculate the settlement of a structure foundation on peat material. According to soil classification by EN ISO 14688-2, peat is an organic soil that contains min. 20% organic matter. It is a highly organic type of soil. Peat material has large compressibility. The value of the constrained elasticity modulus for peat is ca. 400 kPa, while it may be ca 1.0–1.6 MPa for consolidated peat. Due to the extensive range of the modulus, experimental research in this field is proposed. It is suggested to load the peat material layer with an embankment and to determine its total settlement. Based on this, a program was developed to determine the settlement–strain relationship. The authors propose an approach according to two models: the first is based on constant stress distribution in the soil with an oedometer test. The second considers the variability of stresses in the soil and the influence of the loaded area. Both methods were tested based on numerical simulations, and then an experimental field in Szczecin was used. The formulae for the constrained modulus of elasticity measurement were derived; in practical conditions, a uniaxial deformation state can be used with the combination of the total settlement.