Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration

Abstract The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca2+ ATPases (PMCAs), an essential regulator of the intracellular Ca2+ concentration ([iCa2+]) and ne...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rodrigo Herrera-Molina, Kristina Mlinac-Jerkovic, Katarina Ilic, Franziska Stöber, Sampath Kumar Vemula, Mauricio Sandoval, Natasa Jovanov Milosevic, Goran Simic, Karl-Heinz Smalla, Jürgen Goldschmidt, Svjetlana Kalanj Bognar, Dirk Montag
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/242c8b715c3a4890a78cba8ca5160c63
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:242c8b715c3a4890a78cba8ca5160c63
record_format dspace
spelling oai:doaj.org-article:242c8b715c3a4890a78cba8ca5160c632021-12-02T12:32:00ZNeuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration10.1038/s41598-017-07839-92045-2322https://doaj.org/article/242c8b715c3a4890a78cba8ca5160c632017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07839-9https://doaj.org/toc/2045-2322Abstract The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca2+ ATPases (PMCAs), an essential regulator of the intracellular Ca2+ concentration ([iCa2+]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptn lox/loxEmx1Cre mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptn lox/loxEmx1Cre mice and increased [iCa2+] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa2+] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.Rodrigo Herrera-MolinaKristina Mlinac-JerkovicKatarina IlicFranziska StöberSampath Kumar VemulaMauricio SandovalNatasa Jovanov MilosevicGoran SimicKarl-Heinz SmallaJürgen GoldschmidtSvjetlana Kalanj BognarDirk MontagNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-13 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Rodrigo Herrera-Molina
Kristina Mlinac-Jerkovic
Katarina Ilic
Franziska Stöber
Sampath Kumar Vemula
Mauricio Sandoval
Natasa Jovanov Milosevic
Goran Simic
Karl-Heinz Smalla
Jürgen Goldschmidt
Svjetlana Kalanj Bognar
Dirk Montag
Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration
description Abstract The cell adhesion molecule neuroplastin (Np) is a novel candidate to influence human intelligence. Np-deficient mice display complex cognitive deficits and reduced levels of Plasma Membrane Ca2+ ATPases (PMCAs), an essential regulator of the intracellular Ca2+ concentration ([iCa2+]) and neuronal activity. We show abundant expression and conserved cellular and molecular features of Np in glutamatergic neurons in human hippocampal-cortical pathways as characterized for the rodent brain. In Nptn lox/loxEmx1Cre mice, glutamatergic neuron-selective Np ablation resulted in behavioral deficits indicating hippocampal, striatal, and sensorimotor dysfunction paralleled by highly altered activities in hippocampal CA1 area, sensorimotor cortex layers I-III/IV, and the striatal sensorimotor domain detected by single-photon emission computed tomography. Altered hippocampal and cortical activities correlated with reduction of distinct PMCA paralogs in Nptn lox/loxEmx1Cre mice and increased [iCa2+] in cultured mutant neurons. Human and rodent Np enhanced the post-transcriptional expression of and co-localized with PMCA paralogs in the plasma membrane of transfected cells. Our results indicate Np as essential for PMCA expression in glutamatergic neurons allowing proper [iCa2+] regulation and normal circuit activity. Neuron-type-specific Np ablation empowers the investigation of circuit-coded learning and memory and identification of causal mechanisms leading to cognitive deterioration.
format article
author Rodrigo Herrera-Molina
Kristina Mlinac-Jerkovic
Katarina Ilic
Franziska Stöber
Sampath Kumar Vemula
Mauricio Sandoval
Natasa Jovanov Milosevic
Goran Simic
Karl-Heinz Smalla
Jürgen Goldschmidt
Svjetlana Kalanj Bognar
Dirk Montag
author_facet Rodrigo Herrera-Molina
Kristina Mlinac-Jerkovic
Katarina Ilic
Franziska Stöber
Sampath Kumar Vemula
Mauricio Sandoval
Natasa Jovanov Milosevic
Goran Simic
Karl-Heinz Smalla
Jürgen Goldschmidt
Svjetlana Kalanj Bognar
Dirk Montag
author_sort Rodrigo Herrera-Molina
title Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration
title_short Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration
title_full Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration
title_fullStr Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration
title_full_unstemmed Neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration
title_sort neuroplastin deletion in glutamatergic neurons impairs selective brain functions and calcium regulation: implication for cognitive deterioration
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/242c8b715c3a4890a78cba8ca5160c63
work_keys_str_mv AT rodrigoherreramolina neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT kristinamlinacjerkovic neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT katarinailic neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT franziskastober neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT sampathkumarvemula neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT mauriciosandoval neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT natasajovanovmilosevic neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT goransimic neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT karlheinzsmalla neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT jurgengoldschmidt neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT svjetlanakalanjbognar neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
AT dirkmontag neuroplastindeletioninglutamatergicneuronsimpairsselectivebrainfunctionsandcalciumregulationimplicationforcognitivedeterioration
_version_ 1718394205404921856