Increasing the Safety of Adaptive Cruise Control Using Physics-Guided Reinforcement Learning
This paper presents a novel approach for improving the safety of vehicles equipped with Adaptive Cruise Control (ACC) by making use of Machine Learning (ML) and physical knowledge. More exactly, we train a Soft Actor-Critic (SAC) Reinforcement Learning (RL) algorithm that makes use of physical knowl...
Guardado en:
Autores principales: | Sorin Liviu Jurj, Dominik Grundt, Tino Werner, Philipp Borchers, Karina Rothemann, Eike Möhlmann |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/242fdc0348dd4dd2b7c1655c33fc7008 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Influence of Cruise Control Use on Vehicle´s Consumption
por: Loman Michal, et al.
Publicado: (2021) -
Learning-Based Cooperative Adaptive Cruise Control
por: Jonas Mirwald, et al.
Publicado: (2021) -
Challenges for European Tourist-City-Ports: Strategies for a Sustainable Coexistence in the Cruise Post-COVID Context
por: María J. Andrade, et al.
Publicado: (2021) -
Reinforcement Learning Approaches to Optimal Market Making
por: Bruno Gašperov, et al.
Publicado: (2021) -
A Novel Adaptive Cruise Control Strategy for Electric Vehicles Based on a Hierarchical Framework
por: Yanwu Xu, et al.
Publicado: (2021)