High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter

We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: A. Opremcak, C. H. Liu, C. Wilen, K. Okubo, B. G. Christensen, D. Sank, T. C. White, A. Vainsencher, M. Giustina, A. Megrant, B. Burkett, B. L. T. Plourde, R. McDermott
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/243b5350086f47a6b050355f93534096
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:243b5350086f47a6b050355f93534096
record_format dspace
spelling oai:doaj.org-article:243b5350086f47a6b050355f935340962021-12-02T14:26:04ZHigh-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter10.1103/PhysRevX.11.0110272160-3308https://doaj.org/article/243b5350086f47a6b050355f935340962021-02-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.11.011027http://doi.org/10.1103/PhysRevX.11.011027https://doaj.org/toc/2160-3308We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself.A. OpremcakC. H. LiuC. WilenK. OkuboB. G. ChristensenD. SankT. C. WhiteA. VainsencherM. GiustinaA. MegrantB. BurkettB. L. T. PlourdeR. McDermottAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 11, Iss 1, p 011027 (2021)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
A. Opremcak
C. H. Liu
C. Wilen
K. Okubo
B. G. Christensen
D. Sank
T. C. White
A. Vainsencher
M. Giustina
A. Megrant
B. Burkett
B. L. T. Plourde
R. McDermott
High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
description We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter. The protocol relies on the transient response of a dispersively coupled measurement resonator to map the state of the qubit to “bright” and “dark” cavity pointer states that are characterized by a large differential photon occupation. Following this mapping, we photodetect the resonator using the Josephson photomultiplier, which transitions between classically distinguishable flux states when cavity photon occupation exceeds a certain threshold. Our technique provides access to the binary outcome of projective quantum measurement at the millikelvin stage without the need for quantum-limited preamplification and thresholding at room temperature. We achieve raw single-shot measurement fidelity in excess of 98% across multiple samples using this approach in total measurement times under 500 ns. In addition, we show that the backaction and crosstalk associated with our measurement protocol can be mitigated by exploiting the intrinsic damping of the Josephson photomultiplier itself.
format article
author A. Opremcak
C. H. Liu
C. Wilen
K. Okubo
B. G. Christensen
D. Sank
T. C. White
A. Vainsencher
M. Giustina
A. Megrant
B. Burkett
B. L. T. Plourde
R. McDermott
author_facet A. Opremcak
C. H. Liu
C. Wilen
K. Okubo
B. G. Christensen
D. Sank
T. C. White
A. Vainsencher
M. Giustina
A. Megrant
B. Burkett
B. L. T. Plourde
R. McDermott
author_sort A. Opremcak
title High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
title_short High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
title_full High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
title_fullStr High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
title_full_unstemmed High-Fidelity Measurement of a Superconducting Qubit Using an On-Chip Microwave Photon Counter
title_sort high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter
publisher American Physical Society
publishDate 2021
url https://doaj.org/article/243b5350086f47a6b050355f93534096
work_keys_str_mv AT aopremcak highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT chliu highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT cwilen highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT kokubo highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT bgchristensen highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT dsank highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT tcwhite highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT avainsencher highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT mgiustina highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT amegrant highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT bburkett highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT bltplourde highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
AT rmcdermott highfidelitymeasurementofasuperconductingqubitusinganonchipmicrowavephotoncounter
_version_ 1718391358539956224