Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability

Abstract The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs)...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jeong-su Do, Daniel Zwick, Jonathan D. Kenyon, Fei Zhong, David Askew, Alex Y. Huang, Wouter Van’t Hof, Marcie Finney, Mary J. Laughlin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/24468a2c65444254ba3db5b26d183319
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:24468a2c65444254ba3db5b26d183319
record_format dspace
spelling oai:doaj.org-article:24468a2c65444254ba3db5b26d1833192021-12-02T16:49:37ZMesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability10.1038/s41598-021-90115-82045-2322https://doaj.org/article/24468a2c65444254ba3db5b26d1833192021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90115-8https://doaj.org/toc/2045-2322Abstract The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3. These results elucidate cellular and molecular mechanisms underlying human MSC mt transfer to proliferating cells. MSC mt transfer stabilizes FOXP3 expression in iTregs, thereby enhancing and sustaining their suppressive function in inflammatory conditions in vitro and in vivo.Jeong-su DoDaniel ZwickJonathan D. KenyonFei ZhongDavid AskewAlex Y. HuangWouter Van’t HofMarcie FinneyMary J. LaughlinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jeong-su Do
Daniel Zwick
Jonathan D. Kenyon
Fei Zhong
David Askew
Alex Y. Huang
Wouter Van’t Hof
Marcie Finney
Mary J. Laughlin
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability
description Abstract The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3. These results elucidate cellular and molecular mechanisms underlying human MSC mt transfer to proliferating cells. MSC mt transfer stabilizes FOXP3 expression in iTregs, thereby enhancing and sustaining their suppressive function in inflammatory conditions in vitro and in vivo.
format article
author Jeong-su Do
Daniel Zwick
Jonathan D. Kenyon
Fei Zhong
David Askew
Alex Y. Huang
Wouter Van’t Hof
Marcie Finney
Mary J. Laughlin
author_facet Jeong-su Do
Daniel Zwick
Jonathan D. Kenyon
Fei Zhong
David Askew
Alex Y. Huang
Wouter Van’t Hof
Marcie Finney
Mary J. Laughlin
author_sort Jeong-su Do
title Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability
title_short Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability
title_full Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability
title_fullStr Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability
title_full_unstemmed Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability
title_sort mesenchymal stromal cell mitochondrial transfer to human induced t-regulatory cells mediates foxp3 stability
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/24468a2c65444254ba3db5b26d183319
work_keys_str_mv AT jeongsudo mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT danielzwick mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT jonathandkenyon mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT feizhong mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT davidaskew mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT alexyhuang mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT woutervanthof mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT marciefinney mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
AT maryjlaughlin mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability
_version_ 1718383265111343104