Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability
Abstract The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs)...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/24468a2c65444254ba3db5b26d183319 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:24468a2c65444254ba3db5b26d183319 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:24468a2c65444254ba3db5b26d1833192021-12-02T16:49:37ZMesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability10.1038/s41598-021-90115-82045-2322https://doaj.org/article/24468a2c65444254ba3db5b26d1833192021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-90115-8https://doaj.org/toc/2045-2322Abstract The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3. These results elucidate cellular and molecular mechanisms underlying human MSC mt transfer to proliferating cells. MSC mt transfer stabilizes FOXP3 expression in iTregs, thereby enhancing and sustaining their suppressive function in inflammatory conditions in vitro and in vivo.Jeong-su DoDaniel ZwickJonathan D. KenyonFei ZhongDavid AskewAlex Y. HuangWouter Van’t HofMarcie FinneyMary J. LaughlinNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jeong-su Do Daniel Zwick Jonathan D. Kenyon Fei Zhong David Askew Alex Y. Huang Wouter Van’t Hof Marcie Finney Mary J. Laughlin Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability |
description |
Abstract The key obstacle to clinical application of human inducible regulatory T cells (iTreg) as an adoptive cell therapy in autoimmune disorders is loss of FOXP3 expression in an inflammatory milieu. Here we report human iTreg co-cultured with bone marrow-derived mesenchymal stromal cells (MSCs) during short-term ex vivo expansion enhances the stability of iTreg FOXP3 expression and suppressive function in vitro and in vivo, and further that a key mechanism of action is MSC mitochondrial (mt) transfer via tunneling nanotubules (TNT). MSC mt transfer is driven by mitochondrial metabolic function (CD39/CD73 signaling) in proliferating iTreg and promotes iTreg expression of FOXP3 stabilizing factors BACH2 and SENP3. These results elucidate cellular and molecular mechanisms underlying human MSC mt transfer to proliferating cells. MSC mt transfer stabilizes FOXP3 expression in iTregs, thereby enhancing and sustaining their suppressive function in inflammatory conditions in vitro and in vivo. |
format |
article |
author |
Jeong-su Do Daniel Zwick Jonathan D. Kenyon Fei Zhong David Askew Alex Y. Huang Wouter Van’t Hof Marcie Finney Mary J. Laughlin |
author_facet |
Jeong-su Do Daniel Zwick Jonathan D. Kenyon Fei Zhong David Askew Alex Y. Huang Wouter Van’t Hof Marcie Finney Mary J. Laughlin |
author_sort |
Jeong-su Do |
title |
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability |
title_short |
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability |
title_full |
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability |
title_fullStr |
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability |
title_full_unstemmed |
Mesenchymal stromal cell mitochondrial transfer to human induced T-regulatory cells mediates FOXP3 stability |
title_sort |
mesenchymal stromal cell mitochondrial transfer to human induced t-regulatory cells mediates foxp3 stability |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/24468a2c65444254ba3db5b26d183319 |
work_keys_str_mv |
AT jeongsudo mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT danielzwick mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT jonathandkenyon mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT feizhong mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT davidaskew mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT alexyhuang mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT woutervanthof mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT marciefinney mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability AT maryjlaughlin mesenchymalstromalcellmitochondrialtransfertohumaninducedtregulatorycellsmediatesfoxp3stability |
_version_ |
1718383265111343104 |